CHARACTERIZATION OF SILICON-ON-INSULATOR STRUCTURES FORMED BY ION IMPLANTATION OF OXYGEN (SILICON, DEFECTS, INSULATOR).
dc.contributor.advisor | Demer, Louis J. | en_US |
dc.contributor.author | WANG, PING. | |
dc.creator | WANG, PING. | en_US |
dc.date.accessioned | 2011-10-31T16:51:32Z | |
dc.date.available | 2011-10-31T16:51:32Z | |
dc.date.issued | 1986 | en_US |
dc.identifier.uri | http://hdl.handle.net/10150/183849 | |
dc.description.abstract | Silicon-on-insulator (SOI) structures formed in the top region of silicon wafers by ion implantation of oxygen were characterized by RBS (Rutherford Backscattering Spectrometry), OPM (Optical Microscopy), SEM (Scanning Electron Microscopy), and TEM (Transmission Electron Microscopy). Specimens taken from these wafers were previously subjected to specific thermal treatment and silicon epitaxial growth. The results of this investigation show that homogeneous, stoichiometric buried SiO₂ layers were formed beneath the silicon wafer surfaces after high-dose oxygen ion implantation (2.0 x 10¹⁸ O⁺/cm², 180 keV/O⁺). No buried SiO₂ layers were observed in the low-dose wafers (1.0 x 10¹⁷ O⁺/cm², 180 keV/O⁺). Solid-phase epitaxial regrowth (SPE) is strongly temperature dependent. The transition from amorphous (caused by ion impact) to crystalline through the SPE process is completed in the high-dose-rate wafers (∼33 μA/cm²), but not in the low-dose-rate wafers (∼17 μA/cm²). Polysilicon layers were formed on both sides of the SiO₂ layer in the low-dose-rate wafers. Evidence shows that both post annealing (>1000°C, 2 hours in N₂) and in-situ annealing (wafer substrate heating at 500°C during oxygen ion implantation) lower the imperfection density of the top surface region of silicon wafers. A silicon epitaxial layer with low levels of crystalline imperfections was able to be grown on these annealed wafers. The results also show that in-situ annealing is more effective than post annealing. The major microdefects in SOI structures observed in this investigation are dislocations. | |
dc.language.iso | en | en_US |
dc.publisher | The University of Arizona. | en_US |
dc.rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. | en_US |
dc.subject | Semiconductor films. | en_US |
dc.subject | Silicon. | en_US |
dc.title | CHARACTERIZATION OF SILICON-ON-INSULATOR STRUCTURES FORMED BY ION IMPLANTATION OF OXYGEN (SILICON, DEFECTS, INSULATOR). | en_US |
dc.type | text | en_US |
dc.type | Dissertation-Reproduction (electronic) | en_US |
dc.identifier.oclc | 697637662 | en_US |
thesis.degree.grantor | University of Arizona | en_US |
thesis.degree.level | doctoral | en_US |
dc.contributor.committeemember | Sjoreen, Terry P. | en_US |
dc.identifier.proquest | 8623836 | en_US |
thesis.degree.discipline | Material Science and Engineering | en_US |
thesis.degree.discipline | Graduate College | en_US |
thesis.degree.name | Ph.D. | en_US |
dc.description.note | This item was digitized from a paper original and/or a microfilm copy. If you need higher-resolution images for any content in this item, please contact us at repository@u.library.arizona.edu. | |
dc.description.admin-note | Original file replaced with corrected file July 2023. | |
refterms.dateFOA | 2018-06-12T23:45:37Z | |
html.description.abstract | Silicon-on-insulator (SOI) structures formed in the top region of silicon wafers by ion implantation of oxygen were characterized by RBS (Rutherford Backscattering Spectrometry), OPM (Optical Microscopy), SEM (Scanning Electron Microscopy), and TEM (Transmission Electron Microscopy). Specimens taken from these wafers were previously subjected to specific thermal treatment and silicon epitaxial growth. The results of this investigation show that homogeneous, stoichiometric buried SiO₂ layers were formed beneath the silicon wafer surfaces after high-dose oxygen ion implantation (2.0 x 10¹⁸ O⁺/cm², 180 keV/O⁺). No buried SiO₂ layers were observed in the low-dose wafers (1.0 x 10¹⁷ O⁺/cm², 180 keV/O⁺). Solid-phase epitaxial regrowth (SPE) is strongly temperature dependent. The transition from amorphous (caused by ion impact) to crystalline through the SPE process is completed in the high-dose-rate wafers (∼33 μA/cm²), but not in the low-dose-rate wafers (∼17 μA/cm²). Polysilicon layers were formed on both sides of the SiO₂ layer in the low-dose-rate wafers. Evidence shows that both post annealing (>1000°C, 2 hours in N₂) and in-situ annealing (wafer substrate heating at 500°C during oxygen ion implantation) lower the imperfection density of the top surface region of silicon wafers. A silicon epitaxial layer with low levels of crystalline imperfections was able to be grown on these annealed wafers. The results also show that in-situ annealing is more effective than post annealing. The major microdefects in SOI structures observed in this investigation are dislocations. |