• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    RESONANCE AND ASYMPTOTIC SERIES BASED IDENTIFICATION OF AN ACOUSTICALLY RIGID SPHERE (SINGULARITY EXPANSION METHOD).

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8623837_sip1_m.pdf
    Size:
    3.520Mb
    Format:
    PDF
    Description:
    azu_td_8623837_sip1_m.pdf
    Download
    Author
    WEYKER, ROBERT RICHARD.
    Issue Date
    1986
    Keywords
    Scattering (Physics)
    Sound-waves -- Scattering.
    Electromagnetic waves -- Scattering.
    Advisor
    Dudley, Donald G.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Identification of the resonances and the local determination of the radius of curvature of an acoustically rigid sphere from simulated transient input-output data is presented. The scattering from the sphere is formulated using three techniques: the classic Mie-Lorenz series, the singularity expansion method (SEM), and the asymptotic series approximation. The Mie-Lorenz series is used to provide synthetic data. The SEM and the asymptotic series are used to develop two parametric inverse models. The scattered velocity potential is separated into three components: the reflection, the first creeping wave, and the second creeping wave. The effect of removing various components of the scattered potential on the resonance identification is shown, along with the effect of adding small amounts of noise. We find that the identification of a few resonances requires a relatively high order autoregressive, moving-average model. In addition, we show that removing the reflection from the synthetic output has only a small effect on the single or multiple output identified resonances. However, we find that changing the time origin, removing the second creeping wave, or adding small amounts of noise results in large errors in the identified resonances. We find that the radius of curvature can be accurately determined from synthetic data using the asymptotic series based identification. In addition, the identification is robust in the presence of noise, and requires only a low order asymptotic series model.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Applied Mathematics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.