• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    HEAT SHOCK PROTEIN SYNTHESIS AND THERMOTOLERANCE EXPRESSION IN RAT EMBRYONIC FIBROBLASTS (HYPERTHERMIA, GENE REGULATION).

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8623838_sip1_m.pdf
    Size:
    2.840Mb
    Format:
    PDF
    Description:
    azu_td_8623838_sip1_m.pdf
    Download
    Author
    WIDELITZ, RANDALL BRUCE.
    Issue Date
    1986
    Keywords
    Heat -- Physiological effect.
    Fibroblasts.
    Advisor
    Gerner, Eugene W.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In response to a variety of hyperthermic treatments, rat embryonic fibroblasts synthesize heat shock proteins (hsps), including those with molecular weights of 68,000 (hsp 68), 70,000 (hsp 70) and 89,000 (hsp 89). Hyperthermic stresses, which produce the hsps, also cause expression of thermotolerance. The dependence of thermotolerance expression on hsp synthesis was investigated in this mammalian cell line under different heating conditions. Temperature shift experiments showed that hsp synthesis and thermotolerance expression were dependent not only on the absolute hyperthermic temperature, but also on the difference between the initial incubation temperature and the hyperthermic temperature. Small temperature differences which produced no cell killing did not cause detectable synthesis of hsp 68. Increasing the difference of the initial and hyperthermic temperatures reduced cell survival and increased the synthesis of hsp 68. Thermotolerance could be expressed by surviving cells following an initial heat stress even when both heat shock and general protein synthesis were inhibited. Cells exposed to cycloheximide were heated, incubated at their initial temperature for six hours and reheated in the presence of the drug. The inhibitor was then removed and the cells plated for colony formation. The hsps were expressed during this latter incubation period. The regulation of hsp 70 in rat fibroblasts was investigated next. Hsp 70 synthesis rates correlated with the amount of hsp 70 encoding mRNA. The time course of heat shock synthesis and general protein synthesis recovery were each dependent on the duration of the heat stress. Inhibiting protein synthesis with cycloheximide resulted initially in the accumulation of the RNA encoding hsp 70 but did not effect the normal turnover of this RNA species. The conclusions based on these findings are that thermal survival adaptation can be expressed in the absence of hsp 68 synthesis. Hsp 68 is expressed by cells that will ultimately die (see Chapter 2). The hsps do not appear to protect cells against subsequent heat stress. They may function in a repair capacity (see Chapter 3). Hsp 70 expression is primarily regulated by transcription in Rat-1 cells. Hsp 70 does not act to regulate its own turnover (see Chapter 4).
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Molecular and Medical Microbiology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.