• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    TWO-PHOTON MULTIWAVE MIXING (DOPPLER-FREE SPECTROSCOPY).

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8623842_sip1_m.pdf
    Size:
    2.960Mb
    Format:
    PDF
    Description:
    azu_td_8623842_sip1_m.pdf
    Download
    Author
    CAPRON, BARBARA ANNE.
    Issue Date
    1986
    Keywords
    Multiphoton processes.
    Quantum optics.
    Electromagnetic fields.
    Advisor
    Sargent, Murray
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation examines aspects of the interaction of multiple coherent light fields for the two-photon two-level model. In this model the interacting energy levels are not connected by an atomic dipole and a two-photon transition between them is necessary. We employ the density matrix formalism allowing easy comparison between the one- and two-photon two-level models. Significant differences are found due to dynamic Stark shifts and conjugate scattering off the pump-induced two-photon coherence. Averages over Doppler broadening are performed and the new upper-level relaxation mechanisms of decay to an intermediate nonresonant level and ionization from the upper state are included. The new relaxation mechanisms, introduced to the theory to better model experiments, are similar except that ionization is intensity dependent. They cause the resulting probe absorption spectra to become more complex and in general asymmetric. Doppler broadening is also important in experiments using gases. We analytically average over a Lorentzian velocity distribution for both co- and counterpropagating pump and probe beams. For copropagating fields the results are similar to those for the one-photon case averaged over inhomogeneous broadening, whereas counterpropagating pump and probe fields yield the so-called Doppler-free configuration that is normally only modelled to third order in the pump amplitude. We consider the pump field amplitude to all orders and find that as long as the width of the Doppler velocity distribution is significantly larger than the two-photon Rabi frequency the results are Doppler-free. The final part of the dissertation treats the question of two-photon squeezed states. This requires quantized sidemodes. Squeezed states are minimum uncertainty states with unequal variances in the two quadratures of the electromagnetic field amplitude. One way to generate these states is via multiwave mixing and we present here the first calculation for nondegenerate two-photon multiwave mixing as it applies to squeezed states. We find that in general two-photon squeezed states require lower intensities and detuning than those predicted by the one-photon model.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.