• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    FACTORS AFFECTING PARTICLE GROWTH AND RELATED ORGANIC MATTER REMOVAL DURING ALUM COAGULATION (SIZE DISTRIBUTION, TRIHALOMETHANES, HUMIC).

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8623855_sip1_m.pdf
    Size:
    6.230Mb
    Format:
    PDF
    Description:
    azu_td_8623855_sip1_m.pdf
    Download
    Author
    Kuo, Ching-Jey
    Issue Date
    1986
    Keywords
    Water -- Purification -- Organic compounds removal.
    Alum.
    Advisor
    Amy, Gary L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Effects of several important source-related and operation-related factors on particle formation and growth as well as potential particle and dissolved organic matter removal by alum coagulation are described. Two representative natural water sources, with low turbidities and high concentrations of dissolved organic matter, and one commercially available crystalline silica, with defined characteristics, were employed to establish initial aquatic particle and dissolved organic matter conditions. Six experimental variables utilized for evaluation include initial pH, initial turbidity, applied pre-ozonation dose, alum dose, flocculation time and sedimentation time. A bench-scale experimental apparatus with capabilities of ozonation, coagulation, sedimentation and membrane filtration was employed to conduct a series of selected experiments. Each factor investigated in this research proves to be able to inpart, individually or collectively, statistically significant effects on particle formation and growth during alum coagulation. While the addition of model particles shows significant enhancement in particle growth, it fails to demonstrate significant improvement in the removal of dissolved organic matter. On the contrary, effects of pH and alum dose on particle formation and growth are accompanied by corresponding effects on the removal of dissolved organic matter. Pre-ozonation of dissolved organic matter renders the dissolved organic matter more hydrophilic by increasing the number of carboxylic acid functional groups. This phenomenon can significantly improve or impede particle growth as well as dissolved organic matter removal during alum coagulation, depending on raw water chemistry and other operational factors. Alum coagulation under all of the conditions investigated in this research is demonstrably more effective in removing aquatic humic susbtances with higher apparent molecular weights and fewer carboxylic acid functional groups, as opposed to those with lower apparent molecular weight and more carboxylic acid functional groups. The predominant removal mechanisms were found to occur at the beginning stage of the coagulation process; that is, the rapid mixing period. The remaining dissolved organic matter and humic substances can form significant amounts of trihalomethanes upon reaction with chlorine.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Civil Engineering and Engineering Mechanics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.