• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    POLYNOMIALS WITH SMALL VALUE SET OVER FINITE FIELDS.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8704751_sip1_w.pdf
    Size:
    1.356Mb
    Format:
    PDF
    Download
    Author
    GOMEZ-CALDERON, JAVIER.
    Issue Date
    1986
    Keywords
    Polynomials.
    Finite fields (Algebra)
    Advisor
    Madden, Daniel J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Let K(q) be the finite field with q elements and characteristic p. Let f(x) be a monic polynomial of degree d with coefficients in K(q). Let C(f) denote the number of distinct values of f(x) as x ranges over K(q). It is easy to show that C(f) ≤ [|(q - 1)/d|] + 1. Now, there is a characterization of polynomials of degree d < √q for which C(f) = [|(q - 1)/d|] +1. The main object of this work is to give a characterization for polynomials of degree d < ⁴√q for which C(f) < 2q/d. Using two well known theorems: Hurwitz genus formula and Andre Weil's theorem, the Riemann Hypothesis for Algebraic Function Fields, it is shown that if d < ⁴√q and C(f) < 2q/d then f(x) - f(y) factors into at least d/2 absolutely irreducible factors and f(x) has one of the following forms: (UNFORMATTED TABLE FOLLOWS) f(x - λ) = D(d,a)(x) + c, d|(q² - 1), f(x - λ) = D(r,a)(∙ ∙ ∙ ((x²+b₁)²+b₂)²+ ∙ ∙ ∙ +b(m)), d|(q² - 1), d=2ᵐ∙r, and (2,r) = 1 f(x - λ) = (x² + a)ᵈ/² + b, d/2|(q - 1), f(x - λ) = (∙ ∙ ∙((x²+b₁)²+b₂)² + ∙ ∙ ∙ +b(m))ʳ+c, d|(q - 1), d=2ᵐ∙r, f(x - λ) = xᵈ + a, d|(q - 1), f(x - λ) = x(x³ + ax + b) + c, f(x - λ) = x(x³ + ax + b) (x² + a) + e, f(x - λ) = D₃,ₐ(x² + c), c² ≠ 4a, f(x - λ) = (x³ + a)ⁱ + b, i = 1, 2, 3, or 4, f(x - λ) = x³(x³ + a)³ +b, f(x - λ) = x⁴(x⁴ + a)² +b or f(x - λ) = (x⁴ + a) ⁱ + b, i = 1,2 or 3, where D(d,a)(x) denotes the Dickson’s polynomial of degree d. Finally to show other polynomials with small value set, the following equation is obtained C((fᵐ + b)ⁿ) = αq/d + O(√q) where α = (1 – (1 – 1/m)ⁿ)m and the constant implied in O(√q) is independent of q.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Mathematics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.