• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    NONLINEAR OPTICAL PHENOMENA IN ZINC OXIDE WAVEGUIDES (INTEGRATED OPTICS, NONLINEAR COUPLING).

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8704767_sip1_m.pdf
    Size:
    3.687Mb
    Format:
    PDF
    Description:
    azu_td_8704767_sip1_m.pdf
    Download
    Author
    FORTENBERRY, RANCE MORGAN.
    Issue Date
    1986
    Keywords
    Zinc oxide -- Optical properties.
    Nonlinear optics.
    Advisor
    Stegeman, George I.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation reports on the development of a nonlinear surface spectroscopy and the observation of nonlinear optical phenomena using sputtered zinc oxide waveguides. The first is known as Surface Coherent Raman Spectroscopy, or SCRS, and is capable of monolayer sensitivity. The second, discovered during the development of SCRS, is optical limiting and a previously unobserved form of optical switching based on an absorptive nonlinear coupling mechanism. Overviews of the theories of waveguiding, linear coupling, and SCRS are given. Experiments showing that the spectrum of a monolayer coverage of molecules on the surface of a metal oxide waveguide can be obtained using SCRS are reported. For this purpose ZnO waveguides were fabricated using rf magnetron sputtering; the details of which are presented. The results of the characterization of these films, using an optical loss technique, Rutherford backscattering, and X-ray diffraction, are also presented. Experiments are described and data are presented to show the existence of optical limiting and optical switching phenomena in ZnO waveguides. The experimental dependence of these phenomena on input pulse energy, wavelength, temporal pulse width, and type of distributed coupling mechanism is described. Existing nonlinear distributed coupler theory is extended to include the effect of an absorptive nonlinearity and the results of this theory are used to explain some of the characteristic features of the experimental results. A value of n₂ ≅ 2 x 10⁻¹⁶ m²/W for the nonlinear coefficient of sputtered ZnO films is obtained.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Physics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.