• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    BIOCHEMICAL CHARACTERIZATION OF THE BACILLUS SUBTILIS MACROFIBER CELL SURFACE.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8711647_sip1_w.pdf
    Size:
    7.880Mb
    Format:
    PDF
    Download
    Author
    SURANA, UTTAM CHAND.
    Issue Date
    1987
    Keywords
    Bacterial cell walls.
    Bacillus subtilis.
    Cell membranes.
    Prokaryotes.
    Advisor
    Mendelson, Neil H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Cell walls of Bacillus subtilis macrofibers have been biochemically analyzed to determine the contribution of various surface polymers in the twist regulation. Helix hand inversion was induced by a variation in either the growth temperature or the nutritional composition of the culture medium. Initial experiments had demonstrated a fivefold difference in the sensitivity of right- and left-handed forms to muramidases indicating modifications of peptidoglycan as a possible mechanism underlaying inversion. An examination of lysozyme susceptibility of purified cell walls and whole cells derived from the two structural forms, however, exhibited no significant difference suggesting loss of the relevant component(s), perhaps biomechanical in nature, during disintegration of macrofibers. The effect of various twist modulators such as trypsin, ammonium sulfate and D-alanine on the development of helical twist in both switchable and "fixed" mutants were studied. The interaction matrices have established D-alanine as the most potent of right-factors. Intestinal alkaline phosphatase is reported as a newly discovered antagonist to the development of leftward twist. Heat inactivation and protein purification experiments strongly indicated that twist modulation was due to the phosphatase activity rather than minor protease contaminants. The chemical composition of cell walls purified from right- and left-handed structures was determined. No twist correlated differences in the overall content of peptidoglycan, teichoic acid and teichuronic acid were detected. Evidence is presented for the absence of correlation between the extent of ester-linked alanine substitution and twist state. These findings suggest that gross changes in wall composition is perhaps not the mechanism for hand inversion. From the profiles of the wall associated proteins, a 200 Kdal band has been identified whose presence is strongly correlated with the development of leftward twist. This polypeptide was found to be highly sensitive to trypsin; a property it shares with a previously proposed left-twist protein. Preliminary evidence for isolation of left-hand specific polyclonal antibodies is also presented. FJ7, a switchable mutant, was successfully transformed with a plasmid containing the Streptococcus transposon Tn917. A small bank of insertional mutants has been constructed for the isolation of mutants impaired in helix hand inversion.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Molecular and Cellular Biology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.