• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    THE MATHEMATICAL MODELING OF TIME-DEPENDENT PHOTOCONDUCTIVE PHENOMENA IN SEMICONDUCTORS.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8712883_sip1_m.pdf
    Size:
    3.490Mb
    Format:
    PDF
    Description:
    azu_td_8712883_sip1_m.pdf
    Download
    Author
    IVERSON, ARTHUR EVAN.
    Issue Date
    1987
    Keywords
    Photoconductivity -- Mathematical models.
    Semiconductors.
    Advisor
    Palusinski, Olgierd A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation presents results pertaining to the mathematical modeling of semiconductor photoconductors and includes the formulation, analysis, and solution of photoconductive device model equations. The fundamental semiconductor device equations of continuity and transport are derived for the case of a material which contains a large density of deep-level impurities. Electron and hole trapping on deep-level impurities is accounted for by trapping-kinetics rate equations. The coupling between carrier drift and the electric field is completed through Poisson's equation. Simple, nonlinear model equations are presented for bulk-material response based on the dynamics of electron and hole trapping and recombination on deep-level impurities. The characteristics of the solution to these model equations are observed to depend strongly on the excitation intensity. These model equations qualitatively reproduce observed experimental behavior of an iron-doped indium phosphide photoconductor. A theory of the effect of deep-level centers on the generation-recombination noise and responsivity of an intrinsic photoconductor is presented. It is shown that the deep-level centers can influence the generation-recombination noise and responsivity in three main ways: (i) they can shorten the bulk carrier lifetime by Schockley-Read-Hall recombination; (ii) for some values of the capture cross sections, deep-level densities, and temperature, the deep-level centers can trap a significant fraction of the photogenerated minority carriers. This trapping reduces the effective minority carrier mobility and diffusivity and thus reduces the effect of carrier sweep out on both generation noise and responsivity; (iii) the deep-level centers add a new thermal noise source, which results from fluctuations between bound and free carriers. The strength of this new noise source decreases with decreasing temperature at a slower rate than band-to-band thermal generation-recombination noise. Photoconductive device model equations based on time-dependent, convective/diffusive transport equations are presented. The system of model equations is solved numerically with boundary conditions that represent ideal ohmic contacts. Computed results are presented for different photoconductor lengths and bias voltages with spatially uniform, rectangular light-pulse illumination.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Applied Mathematics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.