• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    CHARACTERIZATION AND BIOCHEMICAL MECHANISMS OF THE NEUROTOXIC ACTIONS OF CAPSAICIN

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8219873_sip1_m.pdf
    Size:
    3.603Mb
    Format:
    PDF
    Description:
    azu_td_8219873_sip1_m.pdf
    Download
    Author
    MILLER, MATTHEW STEVEN.
    Issue Date
    1982
    Keywords
    Capsaicin -- Toxicology.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Capsaicin, the primary pungent component of hot peppers, produced chemogenic and thermal antinociception within two hours after administration to adult guinea pigs (2-8 mg/kg). Antinociception lasted in excess of 10 days. In addition, in somewhat higher doses (4-25 mg/kg s.c.) capsaicin also depleted the putative peptide neurotransmitter, substance P, from primary afferent neurons. Depletion of substance P by capsaicin did not occur until at least one day after capsaicin treatment and the onset of antinociception. Antinociception produced by capsaicin appeared to be a result of bioactivation and covalent binding of capsaicin to the distal ends of sensory neurons. Capsaicin depleted substance P from sensory nerves by inhibiting the rate of substance P synthesis by 48 percent. Inhibition of substance P synthesis by capsaicin occurred with some degree of specificity as the rate at which total protein was synthesized was unchanged. The biochemical mechanism by which capsaicin altered substance P synthesis involved alterations in the retrograde axoplasmic transport of nerve growth factor. Doses of capsaicin which depleted substance P also inhibited the retrograde axoplasmic transport of nerve growth factor. Inhibition of the retrograde transport of nerve growth factor by capsaicin preceded substance P depletion. Supplementation of guinea pigs with mouse nerve growth factor completely prevented capsaicin-induced substance P depletion. It is concluded that capsaicin depletes substance P from primary afferent neurons of the adult guinea pig by altering the availability of NGF. The data support a role for NGF in the normal maintenance of neuropeptide levels in some sensory neurons in the adult animal.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Pharmacology & Toxicology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.