• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    LATTICE DEFECT STUDIES OF HIGH QUALITY SINGLE CRYSTAL PLATINUM AND PALLADIUM.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8715715_sip1_m.pdf
    Size:
    2.611Mb
    Format:
    PDF
    Description:
    azu_td_8715715_sip1_m.pdf
    Download
    Author
    KHELLAF, ABDALLAH.
    Issue Date
    1987
    Keywords
    Crystals -- Defects.
    Advisor
    Emrick, Roy M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    An improved quenching technique is described. This technique allows samples to be quenched at slow quenching rates without introducing unwanted dislocations during quench. High quality platinum single crystals 1 mm in diameter have been quenched from temperatures between 900°C and 1550°C using this technique. The data have been analysed and discussed using a sink model for vacancy loss proposed by Emrick. The formation energy was found to be (1.30 ± 0.03) eV. The entropy of formation and the concentration of vacancies at the melting point have been determined to be respectively (0.42 ± 0.11)k and (9.4 ± 0.7)10⁻⁴. High purity palladium single crystals have also been quenched using the same technique. Due to the need for a temperature scale, measurements of the electrical resistance of an ultra pure palladium single crystal have been made to a temperature within 100°C of the melting point. These, along with measurements of the liquid palladium resistivity, are reported. The results are discussed and compared to previously reported values.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Physics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.