• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    ENDOTHELIUM-DEPENDENT RELAXATION OF BLOOD VESSELS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8716354_sip1_m.pdf
    Size:
    3.678Mb
    Format:
    PDF
    Description:
    azu_td_8716354_sip1_m.pdf
    Download
    Author
    HYNES, MICHAEL RAY.
    Issue Date
    1987
    Keywords
    Endothelium.
    Vasodilators.
    Blood-vessels.
    Advisor
    Kreulen, David
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Dilation of blood vessels in response to a large number of agents has been shown to be dependent on an intact vascular endothelium. The present studies examine some aspects of endothelium-dependent vasodilation in blood vessels of the rabbit and rat. Using the rabbit ear artery and the subtype-selective muscarinic antagonist pirenzepine, muscarinic receptors of the endothelium and smooth muscle cells were shown to be of the low affinity M₂ subtype. Inhibition of [³H](-)quinuclidinyl benzilate was used to determine affinity for the smooth muscle receptors while antagonism of methacholine induced vasodilation yielded the endothelial cell receptor affinity. The effect of increasing age (1-27 months) on endothelium-dependent relaxation was studied in aortic rings, perfused tail artery and perfused mesenteric bed of the Fisher 344 rat. Both aortic ring segments and perfused caudal arteries showed an age-related increase in sensitivity of endothelium-mediated relaxation to the cholinergic agonist methacholine. This increased sensitivity occurs between the ages of 6 and 12 months, with no further significant increase up to 27 months of age, suggesting this is a consequence of growth and development rather than old age. No difference with age in cholinergic relaxation was observed in the perfused mesenteric bed indicating either no change of sensitivity in smaller resistance vessels or an effect which is hidden in this more complex perfused system. In contrast to findings with cholinergic stimution, responses of the perfused caudal artery to the calcium ionophore A23187 were not altered with age. This suggests that the alteration with age in response to methacholine involves the muscarinic receptor or receptor coupling mechanism rather than the generation of, or response to, endothelium-derived relaxing factor (EDRF). The influence of endothelium on contractile responses was examined using the perfused caudal artery. Endothelium removal significantly increased contraction to the α-adrenergic agonists methoxamine and BH-T 920 as well as to transmural nerve stimulation. Inhibition of contraction to agents which must first cross the smooth muscle layer before reaching the endothelium suggests that a continuous or basal level of EDRF release is responsible for decreased contraction rather than an receptor stimulated release of EDRF.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Pharmacology & Toxicology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.