Show simple item record

dc.contributor.authorMOSHREFZADEH, ROBERT SHAHRAM.
dc.creatorMOSHREFZADEH, ROBERT SHAHRAM.en_US
dc.date.accessioned2011-10-31T16:59:47Z
dc.date.available2011-10-31T16:59:47Z
dc.date.issued1987en_US
dc.identifier.urihttp://hdl.handle.net/10150/184138
dc.description.abstractBecause of their compatibility with the planar concept of integrated optics, grating couplers offer the most satisfactory means of coupling light into thin film optical waveguides. The purpose of this dissertation has been to study the behaviour, both theoretically and experimentally, and fabrication of grating couplers in nonlinear waveguides. A theory of nonlinear grating couplers is presented based on a coupled-mode approach. The dependence of coupling efficiency on incident beam intensity, beam size, beam position, incident angle, chirp rate, and waveguide losses have been examined all in the presence of nonlinearities in the waveguide. It is reported that, in the presence of nonlinearities, the coupling efficiency decreases with increasing incident power. Different ways of optimizing the coupling efficiency at high incident power levels are presented. These include adjusting the beam size, the coupling angle, and chirping the grating. A new technique is reported for fabrication of regular period, chirped, and curved photoresist gratings. The experimental arrangement is essentially based on Lloyd's mirror fringes and is characterized by its stability, simplicity, and versatility. We also report on successful use of Reactive Ion-Beam Etching (RIBE) with C₂F₆ gas in producing very smooth and deep gratings with high aspect ratios in different waveguide structures. Experimental coupling efficiencies of up to 40% are reported in polystyrene waveguides using etched grating couplers. Experiments are reported in support of the theoretical findings of this dissertation using a polystyrene waveguide with thermal nonlinearity.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectNonlinear optics.en_US
dc.subjectOptical wave guides.en_US
dc.subjectIntegrated optics.en_US
dc.titleTHEORY AND FABRICATION OF SUB-MICRON GRATINGS ON NONLINEAR OPTICAL WAVEGUIDES.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.identifier.oclc698717841en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.identifier.proquest8716357en_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh.D.en_US
dc.description.noteThis item was digitized from a paper original and/or a microfilm copy. If you need higher-resolution images for any content in this item, please contact us at repository@u.library.arizona.edu.
dc.description.admin-noteOriginal file replaced with corrected file July 2023.
refterms.dateFOA2018-08-22T15:52:30Z
html.description.abstractBecause of their compatibility with the planar concept of integrated optics, grating couplers offer the most satisfactory means of coupling light into thin film optical waveguides. The purpose of this dissertation has been to study the behaviour, both theoretically and experimentally, and fabrication of grating couplers in nonlinear waveguides. A theory of nonlinear grating couplers is presented based on a coupled-mode approach. The dependence of coupling efficiency on incident beam intensity, beam size, beam position, incident angle, chirp rate, and waveguide losses have been examined all in the presence of nonlinearities in the waveguide. It is reported that, in the presence of nonlinearities, the coupling efficiency decreases with increasing incident power. Different ways of optimizing the coupling efficiency at high incident power levels are presented. These include adjusting the beam size, the coupling angle, and chirping the grating. A new technique is reported for fabrication of regular period, chirped, and curved photoresist gratings. The experimental arrangement is essentially based on Lloyd's mirror fringes and is characterized by its stability, simplicity, and versatility. We also report on successful use of Reactive Ion-Beam Etching (RIBE) with C₂F₆ gas in producing very smooth and deep gratings with high aspect ratios in different waveguide structures. Experimental coupling efficiencies of up to 40% are reported in polystyrene waveguides using etched grating couplers. Experiments are reported in support of the theoretical findings of this dissertation using a polystyrene waveguide with thermal nonlinearity.


Files in this item

Thumbnail
Name:
azu_td_8716357_sip1_c.pdf
Size:
7.040Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record