• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    ON THE ROBUSTNESS OF TOTAL INDIRECT EFFECTS ESTIMATED IN THE JORESKOG-KEESLING-WILEY COVARIANCE STRUCTURE MODEL.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8716359_sip1_m.pdf
    Size:
    4.276Mb
    Format:
    PDF
    Description:
    azu_td_8716359_sip1_m.pdf
    Download
    Author
    STONE, CLEMENT ADDISON.
    Issue Date
    1987
    Keywords
    Analysis of covariance.
    Monte Carlo method.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In structural equation models, researchers often examine two types of causal effects: direct and indirect effects. Direct effects involve variables that "directly" influence other variables, whereas indirect effects are transmitted via intervening variables. While researchers have paid considerable attention to the distribution of sample direct effects, the distribution of sample indirect effects has only recently been considered. Using the (delta) method (Rao, 1973), Sobel (1982) derived the asymptotic distribution for estimators of indirect effects in recursive systems. Sobel (1986) then derived the asymptotic distribution for estimators of total indirect effects in the Joreskog covariance structure model (Joreskog, 1977). This study examined the applicability of the large sample theory described by Sobel (1986) in small samples. Monte Carlo methods were used to evaluate the behavior of estimated total indirect effects in sample sizes of 50, 100, 200, 400, and 800. Two models were used in the analysis. Model 1 was a nonrecursive model with latent variables, feedback, and functional constraints among the effects (Duncan, Haller, & Portes, 1968; Sobel, 1986). Model 2 was a recursive model with observable variables (Duncan, Featherman, & Duncan, 1972). In addition, variations in these models were studied by randomly increasing and decreasing model parameters. The principal findings of the study suggest certain guidelines for researchers who use Sobel's procedures to evaluate total indirect effects in structural equation models. In order for the behavior of the estimates to approximate the asymptotic properties, sample sizes of 400 or more are indicated for nonrecursive systems similar to Model 1, and for recursive systems such as Model 2, sample sizes of 200 or more are suggested. At these sample sizes, researchers can expect sample indirect effects to be accurate point estimators, and confidence intervals for the effects to behave as theory predicts. A caveat to the above guidelines is that, when the total indirect effects are "small" in magnitude, relative to the scale of the model, convergence to the asymptotic properties appears to be very slow. Under these conditions, sampling distributions for the "smaller" valued estimates were positively skewed. This caused estimates to be significantly different from true values, and confidence intervals to behave contrary to theoretical expectations.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Educational Foundations and Administration
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.