• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    MOUSE SKIN TUMOR INITIATION BY IONIZING RADIATION AND THE DETECTION OF DOMINANT TRANSFORMING GENE(S).

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8726807_sip1_w.pdf
    Size:
    8.000Mb
    Format:
    PDF
    Download
    Author
    JAFFE, DEBORAH RUTH.
    Issue Date
    1987
    Keywords
    Radiation carcinogenesis.
    Ionizing radiation.
    Carcinogenesis.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The initiating potential of a range of 4 MeV X-rays was studied using the mouse skin two-stage model of carcinogenesis. A single dose of radiation was followed by promotion with 12-O-tetradecanoyl phorbol-13-acetate (TPA). The effect of TPA on tumor incidence when applied as a single dose 24 hours prior to irradiation was examined. Studies were also designed to investigate the effect of promotion duration on tumor incidence. Animals were promoted with TPA for 10 or 60 weeks. Evidence presented here indicates that ionizing radiation can act as an initiator in this model system. All animals that were promoted with TPA for the same duration had a similar incidence of papillomas (pap) regardless of radiation or TPA pretreatment. However, squamous cell carcinomas (scc) arose only in animals that were initiated with ionizing radiation followed by TPA promotion. Increasing the promotion duration enhanced the incidence of scc at the lower initiation dose. TPA pretreatment at the higher irradiation dose resulted in an overall decrease in tumor incidence. At the lower dose of radiation, TPA pretreatment resulted in an increase in the incidence of scc. The incidence of basal cell carcinomas (bcc) was dose dependent and appeared to be independent of TPA promotion. Although ionizing radiation acts as a weak initiator in mouse skin, the conversion of pap to scc was higher than that reported for chemical initiators. To test this further animals were initiated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) followed by biweekly promotion with TPA. After 20 weeks of promotion, the animals were treated with either acetone, TPA or 8 fractions of 1 MeV electrons. Data indicate that the dose and fractionation protocol used in this study enhanced the progression of pre-existing pap. To examine the role of oncogene activation in radiation induced mouse skin tumors, DNA from various tumors (pap, bcc, scc) were examined for the presence of dominant transforming activity by the NIH3T3 and Rat-2 focus assays. Dominant transforming activity was observed in all tumor types but not in normal or treated epidermis or corresponding liver. The transformed phenotype was further confirmed by growth in soft agar and tumorigenicity in Nude mice. Southern blot hybridization to ras (Ha, Ki, N), raf, neu, erbB and β-lym indicate that these genes are not responsible for the observed transforming activity. These data suggest that the oncogenic sequences activated in these tumors are unique. The work presented here also provides evidence for novel c-myc transcripts and corresponding genomic rearrangements in a few of the tumors studied.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Molecular and Cellular Biology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.