• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    ANALOGS OF CHLORAMPHENICOL AS MECHANISM-BASED INACTIVATORS OF RAT LIVER CYTOCHROMES P-450

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8726832_sip1_c.pdf
    Size:
    3.803Mb
    Format:
    PDF
    Download
    Author
    MILLER, NATALIE ELIZABETH.
    Issue Date
    1987
    Keywords
    Cytochrome P-450.
    Chloramphenicol.
    Biotransformation (Metabolism)
    Xenobiotics -- Metabolic detoxification.
    Advisor
    Halpert, James
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The cytochrome P-450 dependent monooxygenase system plays a key role in the bioactivation and detoxication of xenobiotics. Isozyme-specific inhibitors of cytochrome P-450 may be useful in elucidating the role of particular isozymes in xenobiotic metabolism or in suppressing the bioactivation of xenobiotics and enhancing detoxication. The antibiotic chloramphenicol is a selective mechanism-based inactivator of rat liver cytochromes P-450, inactivating 6 of the 12 isozymes monitored, including the major phenobarbital-inducible isozyme PB-B. Analogs of chloramphenicol have been tested to determine the importance of various functional groups in regulating the effectiveness and isozyme selectivity of chloramphenicol as a mechanism-based inactivator of cytochromes P-450. This information will aid in the design of more effective and isozyme specific mechanism-based inactivators. The dihalomethyl group and the propanediol moiety were found to be important in determining the efficacy of inactivation and the ability to inactivate the enzyme by virtue of the modification of the protein as opposed to the modification of the heme moiety. The propanediol side chain also plays a role in the isozyme selectivity. Unlike chloramphenicol, N (2-p-nitrophenethyl)dichloroacetamide (pNO₂DCA), which contains an ethyl group in place of the propanediol side chain of chloramphenicol, is an effective inactivator of BNF-B, the major beta-naphthoflavone-inducible isozyme, as well as PB-B, in vitro and in vivo. Alkaline hydrolysis and enzymatic digestion of the covalently modified isozymes has shown that chloramphenicol and pNO₂DCA are both metabolized by cytochromes P-450 to oxamyl chlorides which bind to lysine and other amino acid residues of the enzyme. However, the mechanism by which pNO₂DCA inactivates BNF-B differs significantly from that by which chloramphenicol inactivates PB-B, although both involve an impairment of the transfer of electrons from NADPH-cytochrome P-450 reductase, suggesting that there are differences in the active sites of these two isozymes.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Pharmacology & Toxicology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.