Show simple item record

dc.contributor.authorBILHORN, ROBERT BYERS.
dc.creatorBILHORN, ROBERT BYERS.en_US
dc.date.accessioned2011-10-31T17:01:12Z
dc.date.available2011-10-31T17:01:12Z
dc.date.issued1987en_US
dc.identifier.urihttp://hdl.handle.net/10150/184186
dc.description.abstractThe investigations described within this dissertation foretell the imminent revolution in optical analytical spectroscopy and conclusively demonstrate superior qualitative and quantitative analysis performance of a new system for atomic spectroscopy as compared to present, state-of-the-art instrumentation. The advent of a new class of multichannel detectors, the silicon charge transfer devices (CTDs) is shown to significantly impact ultraviolet, visible, and near-infrared analytical spectroscopy. An overview of the operation, characteristics, and performance of CTDs is presented including the results of the characteristics of a CTD detector system developed during these investigations. Theoretical comparisons of the performance obtainable in spectroscopic systems employing CTD detectors versus conventional detectors, including equations identifying the factors limiting sensitivity, demonstrate that CTDs offer superior performance. The second part of this dissertation describes the application of a particular CTD, the charge injection device (CID), to a very challenging spectroscopic problem, as far as light detection is concerned, simultaneous multielement analytical atomic emission spectroscopy. This widely employed technique for qualitative and quantitative elemental analysis requires sensitive and wide dynamic range detection of a large number of spectral resolution elements. This research resulted in the development of a novel echelle spectrometer employing a CID detector which has been demonstrated to be capable of solving many of the problems currently encountered in analytical atomic spectroscopy. The system achieves superior sample throughput rates, flexibility, accuracy and precision as compared to sequential spectrometers employing a single detector and to polychromators employing relatively few fixed detectors. The research included the development of a unique method of operating the CID, which is used to cope with the very wide dynamic range signals encountered in atomic spectroscopy, and has resulted in a spectroscopic instrument able to qualify simultaneously major and trace components of extremely complex samples with greater sensitivity and accuracy than possible with conventional instrumentation. New, very flexible, and extremely rapid methods of qualitative analysis have also been developed which virtually eliminate the possibility of spectral line misassignment. The atomic emission spectroscopic system is applicable in a variety of analytical areas as diversified as high sensitivity detection of near infrared spectral lines and element-specific detection of chromatographic eluents.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectCharge transfer devices (Electronics)en_US
dc.subjectAtomic spectroscopy.en_US
dc.subjectOptical spectrometers.en_US
dc.titleANALYTICAL SPECTROSCOPIC CAPABILITIES OF OPTICAL IMAGING CHARGE TRANSFER DEVICES.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.identifier.oclc699803248en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.identifier.proquest8726843en_US
thesis.degree.disciplineChemistryen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh.D.en_US
dc.description.noteThis item was digitized from a paper original and/or a microfilm copy. If you need higher-resolution images for any content in this item, please contact us at repository@u.library.arizona.edu.
dc.description.admin-noteOriginal file replaced with corrected file July 2023.
refterms.dateFOA2018-08-19T01:12:18Z
html.description.abstractThe investigations described within this dissertation foretell the imminent revolution in optical analytical spectroscopy and conclusively demonstrate superior qualitative and quantitative analysis performance of a new system for atomic spectroscopy as compared to present, state-of-the-art instrumentation. The advent of a new class of multichannel detectors, the silicon charge transfer devices (CTDs) is shown to significantly impact ultraviolet, visible, and near-infrared analytical spectroscopy. An overview of the operation, characteristics, and performance of CTDs is presented including the results of the characteristics of a CTD detector system developed during these investigations. Theoretical comparisons of the performance obtainable in spectroscopic systems employing CTD detectors versus conventional detectors, including equations identifying the factors limiting sensitivity, demonstrate that CTDs offer superior performance. The second part of this dissertation describes the application of a particular CTD, the charge injection device (CID), to a very challenging spectroscopic problem, as far as light detection is concerned, simultaneous multielement analytical atomic emission spectroscopy. This widely employed technique for qualitative and quantitative elemental analysis requires sensitive and wide dynamic range detection of a large number of spectral resolution elements. This research resulted in the development of a novel echelle spectrometer employing a CID detector which has been demonstrated to be capable of solving many of the problems currently encountered in analytical atomic spectroscopy. The system achieves superior sample throughput rates, flexibility, accuracy and precision as compared to sequential spectrometers employing a single detector and to polychromators employing relatively few fixed detectors. The research included the development of a unique method of operating the CID, which is used to cope with the very wide dynamic range signals encountered in atomic spectroscopy, and has resulted in a spectroscopic instrument able to qualify simultaneously major and trace components of extremely complex samples with greater sensitivity and accuracy than possible with conventional instrumentation. New, very flexible, and extremely rapid methods of qualitative analysis have also been developed which virtually eliminate the possibility of spectral line misassignment. The atomic emission spectroscopic system is applicable in a variety of analytical areas as diversified as high sensitivity detection of near infrared spectral lines and element-specific detection of chromatographic eluents.


Files in this item

Thumbnail
Name:
azu_td_8726843_sip1_c.pdf
Size:
21.29Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record