• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DYNAMIC PRODUCTION PLANNING WITH SUBCONTRACTING.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8726851_sip1_m.pdf
    Size:
    2.935Mb
    Format:
    PDF
    Description:
    azu_td_8726851_sip1_m.pdf
    Download
    Author
    Wu, Yih-Bor
    Issue Date
    1987
    Keywords
    Production planning.
    Production control.
    Production scheduling.
    Dynamic programming.
    Subcontracting.
    Advisor
    John, Thuruthickara C.
    Committee Chair
    John, Thuruthickara C.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This research is concerned with scheduling production over a finite planning horizon in a capacitated manufacturing facility. It is assumed that a second source of supply is available by means of subcontracting and that the demand varies over time. The problem is to establish the production level in the facility and/or the ordering quantity from the subcontractor for each period in the planning horizon. Firstly, the cost functions are analyzed and two types of realistic production cost models are identified. Then mathematical models are developed for two different problems. One is a single criterion problem aimed at minimizing the total production and inventory costs. The other is a bicriterion problem which seeks the efficient frontier with respect to the total cost and the number of subcontractings, both to be minimized, over the planning horizon. For each of the above, two methods, namely, a general dynamic programming approach and an improved dynamic programming approach (Shortest path method) are presented. Several results are obtained for reducing the computations in solving these problems. Based on these results, algorithms are developed for both problems. The computational complexity of these algorithms are also analyzed. Two heuristic rules are then suggested for obtaining near-optimal solutions to the first problem with lesser computation. Both rules have been tested extensively and the results indicate advantages of using them. One of these rules is useful for solving the uncapacitated problem faster without losing optimality. The above results are then extended to other cases where some of the assumptions in the original problem are relaxed. Finally, we studied the multi-item lot-sizing problem with the subcontracting option and proposed a heuristic for solving the problem by the Lagrangean relaxation approach. We demonstrated that with an additional capacity constraint in the dual problem the feasible solution and the lower bound obtained during each iteration converge much faster than without it. After testing some randomly generated problems we found that most of the solutions obtained from the heuristic are very close to the best lower bound obtained from the dual problem within a limited number of iterations.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Systems and Industrial Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.