• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    THE FORMULATION OF THE STREAMING RAY METHOD FOR ELECTRON TRANSPORT CALCULATIONS IN TWO DIMENSIONS.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8727937_sip1_m.pdf
    Size:
    3.202Mb
    Format:
    PDF
    Description:
    azu_td_8727937_sip1_m.pdf
    Download
    Author
    SMITH, MARK SCOTT.
    Issue Date
    1987
    Keywords
    Electrons -- Scattering.
    Electron transport.
    Monte Carlo method.
    Particle range (Nuclear physics)
    Advisor
    Filippone, William L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In this work, the method of streaming rays have been expanded to two spatial dimensions (three phase space dimensions, x, y, and s) and was used as a basis for the development of the electron transport computer code SR2D. The streaming ray algorithm is an Eulerian-Lagrangian hybrid. Electrons are followed as they traverse the medium along specified streaming rays. Fluxes, however, are computed at the centers of the fixed cells. The development of the SR2D code required the specification of a Lagrangian streaming ray network overlaying a three dimensional Eulerian grid. In contrast to its one dimensional predecessor, the SR2D code accommodates non-uniform cell sizes and allows for arbitrary quadrature sets (S₂, S₄, S₆, S₈, S₁₂, or S₁₆). The critical aspect of the streaming ray method is the determination of the pathlengths of each and every streaming ray through all of the Eulerian cells. These values must be precalculated and stored because of the iterative nature of the solution scheme. Although the number of pathlengths may be exceedingly large, computer memory requirements are minimized, however, in the two dimensional algorithm by the symmetry of the geometry in each pathlength increment. The SR2D code was used to calculate the energy deposition profile for two kinds of sources, an isotropic point source and a monodirectional point at the periphery of a two dimensional medium. For each case, we chose aluminum with dimensions 0.01g/cm² thick by 0.02g/cm² wide as the medium and specified a grid of 5 by 10 uniform cells, respectively. The pathlength increment was 0.002g/cm² with 25 pathlength increments chosen. An S₈ quadrature set was selected for the monodirectional point source while an S₁₂ quadrature set was used for the isotropic point source. Both sources were normalized to one incident particle with an energy of 200 keV. SR2D results were compared with those from the electron/photon Monte Carlo code TIGER. The total energy deposited in the medium and peak cell was selected to facilitate the comparison. For the monodirectional point source SR2D results were within 1% for total energy deposited into the medium and peak cell energy. The total energy deposited for the isotropic point source was within 1%, but peak cell energy varied by 4%.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Nuclear and Energy Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.