We are upgrading the repository! A content freeze is in effect until November 22nd, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.

Show simple item record

dc.contributor.advisorStrickland, Robin N.en_US
dc.contributor.authorKIM, CHEOL-SUNG.
dc.creatorKIM, CHEOL-SUNG.en_US
dc.date.accessioned2011-10-31T17:02:28Z
dc.date.available2011-10-31T17:02:28Z
dc.date.issued1987en_US
dc.identifier.urihttp://hdl.handle.net/10150/184228
dc.description.abstractThis dissertation analyzes the different characteristics of color images compared to monochromatic images, combines these characteristics with monochromatic image enhancement techniques, and proposes useful color image enhancement algorithms. Luminance, hue, and saturation (L-H-S) color space is selected for color image enhancement. Color luminance is shown to play the most important role in achieving good image enhancement. Color saturation also exhibits unique features which contribute to the enhancement of high frequency details and color contrast. The local windowing method, one of the most popular image processing techniques, is rigorously analyzed for the effects of window size or weighting values on the visual appearance of an image, and the subjective enhancement afforded by local image processing techniques is explained in terms of the human vision system response. The digital color image enhancement algorithms proposed are based on the observation that the enhanced luminance image results in a good color image in L-H-S color space when the chromatic components (hue, and saturation) are kept the same. The saturation component usually contains high frequency details that are not present in the luminance component. However, processing only the saturation, while keeping the luminance and the hue unchanged, is not satisfactory because the response of human vision system presents a low pass filter to the chromatic components. To exploit high frequency details of the saturation component, we take the high frequency component of the inverse saturation image, which correlates with the luminance image, and process the luminance image proportionally to this inverse saturation image. These proposed algorithms are simple to implement. The main three application areas in image enhancement: contrast enhancement, sharpness enhancement, and noise smoothing, are discussed separately. The computer processing algorithms are restricted to those which preserve the natural appearance of the scene.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectImage processing -- Digital techniques.en_US
dc.subjectImaging systems -- Image quality.en_US
dc.titleDIGITAL COLOR IMAGE ENHANCEMENT BASED ON LUMINANCE & SATURATION.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.identifier.oclc699825936en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.identifier.proquest8801597en_US
thesis.degree.disciplineElectrical and Computer Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh.D.en_US
dc.description.noteThis item was digitized from a paper original and/or a microfilm copy. If you need higher-resolution images for any content in this item, please contact us at repository@u.library.arizona.edu.
dc.description.admin-noteOriginal file replaced with corrected file July 2023.
refterms.dateFOA2018-06-26T04:19:52Z
html.description.abstractThis dissertation analyzes the different characteristics of color images compared to monochromatic images, combines these characteristics with monochromatic image enhancement techniques, and proposes useful color image enhancement algorithms. Luminance, hue, and saturation (L-H-S) color space is selected for color image enhancement. Color luminance is shown to play the most important role in achieving good image enhancement. Color saturation also exhibits unique features which contribute to the enhancement of high frequency details and color contrast. The local windowing method, one of the most popular image processing techniques, is rigorously analyzed for the effects of window size or weighting values on the visual appearance of an image, and the subjective enhancement afforded by local image processing techniques is explained in terms of the human vision system response. The digital color image enhancement algorithms proposed are based on the observation that the enhanced luminance image results in a good color image in L-H-S color space when the chromatic components (hue, and saturation) are kept the same. The saturation component usually contains high frequency details that are not present in the luminance component. However, processing only the saturation, while keeping the luminance and the hue unchanged, is not satisfactory because the response of human vision system presents a low pass filter to the chromatic components. To exploit high frequency details of the saturation component, we take the high frequency component of the inverse saturation image, which correlates with the luminance image, and process the luminance image proportionally to this inverse saturation image. These proposed algorithms are simple to implement. The main three application areas in image enhancement: contrast enhancement, sharpness enhancement, and noise smoothing, are discussed separately. The computer processing algorithms are restricted to those which preserve the natural appearance of the scene.


Files in this item

Thumbnail
Name:
azu_td_8801597_sip1_c.pdf
Size:
26.68Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record