• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Phase measurement accuracy limitation in phase shifting interferometry.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8804161_sip1_m.pdf
    Size:
    3.423Mb
    Format:
    PDF
    Description:
    azu_td_8804161_sip1_m.pdf
    Download
    Author
    Ai, Chiayu.
    Issue Date
    1987
    Keywords
    Phase shift (Nuclear physics)
    Interferometry.
    Advisor
    Wyant, James C.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In phase shift interferometry (PSI), several factors affect measurement accuracy, such as piezoelectric transducer (PZT) calibration (i.e. PZT slope error) and PZT nonlinearity, vibration, spurious reflection, source bandwidth, detector nonlinearity, and detector noise. The effects of these error sources on several algorithms to solve the phase of the wavefront are studied. When the simple arctangent formula is used, if the PZT slope is properly adjusted, the error due to the PZT quadratic nonlinearity can be tremendously reduced. An exact solution is derived to remove the error when the PZT quadratic nonlinearity is large. Although Carre's formula is insensitive to PZT slope, this formula is more sensitive to the detector nonlinearity than the simple arctangent formula. For most error sources, the error of the phase solved has a double-frequency characteristic. Thus, averaging two measured phases of two runs, which have a ninety degree phase shift related to each other, can effectively reduce the error. For a small vibration, the phase error has a very simple relation to the vibration amplitude, and a very complex relation to the vibration frequency. Although the error caused by vibration has this double-frequency characteristic, the averaging technique does not apply. The error caused by spurious reflection does not have such a characteristic. A new algorithm is proposed to eliminate the phase error caused by certain types of spurious reflection. When detector noise is concerned, the phase error is inversely proportional to the modulation of the intensity times the square root of the number of steps/buckets. For the shot noise, the phase error is inversely proportional to the fringe contrast times the square root of the total number of photons. In practice, the shot noise is very much smaller than the detector noise. In a practical environment, PZT calibration, vibration, and spurious reflection have much more prominent effects on the PSI than the source bandwidth, detector nonlinearity, and detector noise. When spurious reflection and vibration are under control, and the signal-to-noise ratio is about 20, the PSI has an accuracy of 2 degrees, i.e. 3.3nm at 633nm. Because vibration and detector noise are random error sources, the errors caused by them can be reduced by averaging many measurements. However, the error caused by the other discussed sources cannot be reduced by averaging many measurements.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.