• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Star formation in the Monoceros OB1 dark cloud.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8804181_sip1_m.pdf
    Size:
    4.385Mb
    Format:
    PDF
    Description:
    azu_td_8804181_sip1_m.pdf
    Download
    Author
    Margulis, Michael Scott.
    Issue Date
    1987
    Keywords
    Stars -- Formation.
    Advisor
    Lada, Charles J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A survey of the Monoceros OB1 dark cloud has been made for molecular outflows and young stellar objects. In all, nine molecular outflows and thirty far-infrared sources were identified in a portion of the cloud composed of about 3 x 10⁴ M(⊙)of material. Statistical arguments suggest that 90% of the far-infrared sources actually are young stellar objects embedded in the cloud. If the star formation rate in the Mon OB1 cloud is roughly constant with time then molecular outflows in the cloud should be able to support it against collapse due to gravity. This suggests that the birthrate of outflows in the solar neighborhood is very high. In fact, regardless of considerations of cloud support, the large number of outflows identified in the Mon OB1 cloud and the propensity of the youngest stellar objects in the cloud to be associated with outflows suggest that outflows have a high birthrate in the solar neighborhood and are part of a common stage in early stellar evolution. The young stellar objects identified in the cloud can be fit into a spectral classification system. In fact, in terms of spectral slopes, far-infrared luminosity, and source size the properties of the objects are consistent with expectations if the system represents an evolutionary sequence. It is also found that the outflow phase in early stellar evolution tends to occur at about the time that young stellar objects lose a large fraction of their circumstellar envelopes. As a result it seems likely that outflows play an important role in sweeping out the circumstellar gas around many young stellar objects and may, in fact, play an important part in the evolutionary transition between the protostellar and stellar stages of evolution.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Astronomy
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.