We are upgrading the repository! A content freeze is in effect until November 22nd, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.

Show simple item record

dc.contributor.advisorHendricks, D. M.en_US
dc.contributor.authorLevine, Steven Joel.
dc.creatorLevine, Steven Joel.en_US
dc.date.accessioned2011-10-31T17:04:26Z
dc.date.available2011-10-31T17:04:26Z
dc.date.issued1987en_US
dc.identifier.urihttp://hdl.handle.net/10150/184299
dc.description.abstractImportant pedogenic processes of soils formed on dolomitic limestones are affected by the degree of in-situ weathering of the underlying bedrock. Decalcification and silicate clay illuviation of Haplustalfs and Calciustolls of the Colorado Plateau in northwestern Arizona results from the establishment of effective porosity in the parent rock. The underlying carbonate strata, the Kaibab Formation, are a complex limestone-dolomite-chert marine sediment of Permian age. Diagenetic processes have modified the initial porosity present at the time the sediment was deposited. Pleistocene meteoric waters, percolating downward, have resulted in the solutioning and partial removal of the calcium carbonate and the establishment of a porous dolomitic framework. Under these conditions, soils forming in residuum are able to decalcify and to form argillic horizons. However, in more resistant limestones, compaction during burial has resulted in a nonporous micrite which retards calcite removal by meteoric waters. Under these conditions, soil profiles maintain a high CaCO₃ content and silicate clay illuviation does not occur. Micaceous clay minerals of residual origin are converted to montmorillonite in the Alfisols. A probable sequence of events for this transformation to occur is: (1) the removal of calcite from the dolomitic limestone bedrock and the formation of a dolomitic framework, (2) the slow dissolution of dolomite and release of Mg⁺⁺ into solution, (3) the incorporation of Mg⁺⁺ into the octahedral layer of the mica and the release of K⁺ from the mica interlayer position, and (4) the illuviation of montmorillonite to form the argillic horizon. Eolian dust is also important to soil genesis on the Colorado Plateau. In particular, quartz in the coarse silt fraction (31-44 um) and quartz and biotite in the very fine and fine silt fractions (2.0-16 um). Two alluvial soils of Pleistocene age shows important morphological differences. Thick carbonate accumulations of ground water origin are present in the older soil. The effects of the Pleistocene-Holocene climatic change on this area are: (1) modification of karst topographic features, (2) aggradation of valley bottoms, and (3) the influence of Holocene slope wash Pleistocene soil properties such as calcite, dolomite and organic matter.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectSoils -- Arizona -- Kaibab Formation.en_US
dc.subjectSoil formation -- Arizona -- Kaibab Formation.en_US
dc.titleGenesis of soils derived from the Kaibab Formation of the Colorado Plateau, Arizona.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.identifier.oclc700279441en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberSchreiber, J. F.en_US
dc.contributor.committeememberBull, W. B.en_US
dc.contributor.committeememberPost, D. F.en_US
dc.contributor.committeememberStroehlein, J. L.en_US
dc.identifier.proquest8805518en_US
thesis.degree.disciplineSoil and Water Scienceen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh.D.en_US
dc.description.noteThis item was digitized from a paper original and/or a microfilm copy. If you need higher-resolution images for any content in this item, please contact us at repository@u.library.arizona.edu.
dc.description.admin-noteOriginal file replaced with corrected file April 2023.
refterms.dateFOA2018-04-25T18:43:07Z
html.description.abstractImportant pedogenic processes of soils formed on dolomitic limestones are affected by the degree of in-situ weathering of the underlying bedrock. Decalcification and silicate clay illuviation of Haplustalfs and Calciustolls of the Colorado Plateau in northwestern Arizona results from the establishment of effective porosity in the parent rock. The underlying carbonate strata, the Kaibab Formation, are a complex limestone-dolomite-chert marine sediment of Permian age. Diagenetic processes have modified the initial porosity present at the time the sediment was deposited. Pleistocene meteoric waters, percolating downward, have resulted in the solutioning and partial removal of the calcium carbonate and the establishment of a porous dolomitic framework. Under these conditions, soils forming in residuum are able to decalcify and to form argillic horizons. However, in more resistant limestones, compaction during burial has resulted in a nonporous micrite which retards calcite removal by meteoric waters. Under these conditions, soil profiles maintain a high CaCO₃ content and silicate clay illuviation does not occur. Micaceous clay minerals of residual origin are converted to montmorillonite in the Alfisols. A probable sequence of events for this transformation to occur is: (1) the removal of calcite from the dolomitic limestone bedrock and the formation of a dolomitic framework, (2) the slow dissolution of dolomite and release of Mg⁺⁺ into solution, (3) the incorporation of Mg⁺⁺ into the octahedral layer of the mica and the release of K⁺ from the mica interlayer position, and (4) the illuviation of montmorillonite to form the argillic horizon. Eolian dust is also important to soil genesis on the Colorado Plateau. In particular, quartz in the coarse silt fraction (31-44 um) and quartz and biotite in the very fine and fine silt fractions (2.0-16 um). Two alluvial soils of Pleistocene age shows important morphological differences. Thick carbonate accumulations of ground water origin are present in the older soil. The effects of the Pleistocene-Holocene climatic change on this area are: (1) modification of karst topographic features, (2) aggradation of valley bottoms, and (3) the influence of Holocene slope wash Pleistocene soil properties such as calcite, dolomite and organic matter.


Files in this item

Thumbnail
Name:
azu_td_8805518_sip1_c.pdf
Size:
31.73Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record