Show simple item record

dc.contributor.advisorLichter, Sethen_US
dc.contributor.authorChen, Jerry Min.
dc.creatorChen, Jerry Min.en_US
dc.date.accessioned2011-10-31T17:05:55Z
dc.date.available2011-10-31T17:05:55Z
dc.date.issued1988en_US
dc.identifier.urihttp://hdl.handle.net/10150/184350
dc.description.abstractThe generation and evolution of cross-waves in a channel are investigated analytically, numerically and experimentally. The derivation of the modulation equation governing the inviscid cross-wave amplitude yields the nonlinear Schrodinger equation with a homogeneous Robin boundary condition at the wavemaker. Either of two uniformly valid scalings--cross-wave amplitude of the same order as or much larger than the wavemaker amplitude--may be used in the derivations. The differences between the two scalings are discussed. The inviscid modulation equation is augmented by a linear damping term, the coefficient of which is determined empirically from the measured neutral stability curve. The viscous modulation equation is solved numerically. The theory is compared to experiments in a channel 30.9 cm wide, for mode n = 6, for frequencies close to the cutoff frequency 7.82 Hz. Measurements include the neutral stability curve, the onset of modulation, cross-wave phase along the channel, and cross-wave amplitude as functions of wavemaker amplitude, forcing frequency and distance from the wavemaker. These measurements are in good agreement with the numerical results. The results are also observed to be sensitive to viscous effects. Additionally, both numerical calculations and experiment reveal trapped and propagating modes. The trapped mode is most easily observed at positive detuning.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectResonance.en_US
dc.subjectWaves.en_US
dc.titleSubharmonic resonance of nonlinear cross-waves: Theory and experiments.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.identifier.oclc701248771en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberFasel, Hermann F.en_US
dc.contributor.committeememberLamb, George L.en_US
dc.contributor.committeememberPearlstein, Arne J.en_US
dc.identifier.proquest8814219en_US
thesis.degree.disciplineAerospace and Mechanical Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh.D.en_US
dc.description.noteThis item was digitized from a paper original and/or a microfilm copy. If you need higher-resolution images for any content in this item, please contact us at repository@u.library.arizona.edu.
dc.description.admin-noteOriginal file replaced with corrected file July 2023.
refterms.dateFOA2018-08-15T22:31:10Z
html.description.abstractThe generation and evolution of cross-waves in a channel are investigated analytically, numerically and experimentally. The derivation of the modulation equation governing the inviscid cross-wave amplitude yields the nonlinear Schrodinger equation with a homogeneous Robin boundary condition at the wavemaker. Either of two uniformly valid scalings--cross-wave amplitude of the same order as or much larger than the wavemaker amplitude--may be used in the derivations. The differences between the two scalings are discussed. The inviscid modulation equation is augmented by a linear damping term, the coefficient of which is determined empirically from the measured neutral stability curve. The viscous modulation equation is solved numerically. The theory is compared to experiments in a channel 30.9 cm wide, for mode n = 6, for frequencies close to the cutoff frequency 7.82 Hz. Measurements include the neutral stability curve, the onset of modulation, cross-wave phase along the channel, and cross-wave amplitude as functions of wavemaker amplitude, forcing frequency and distance from the wavemaker. These measurements are in good agreement with the numerical results. The results are also observed to be sensitive to viscous effects. Additionally, both numerical calculations and experiment reveal trapped and propagating modes. The trapped mode is most easily observed at positive detuning.


Files in this item

Thumbnail
Name:
azu_td_8814219_sip1_c.pdf
Size:
10.21Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record