• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Chemical equilibria and fluid flow during compaction diagenesis of organic-rich geopressured sediments.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8814220_sip1_m.pdf
    Size:
    3.306Mb
    Format:
    PDF
    Description:
    azu_td_8814220_sip1_m.pdf
    Download
    Author
    Capuano, Regina Marie.
    Issue Date
    1988
    Keywords
    Sediment compaction.
    Fluid dynamics.
    Kerogen.
    Advisor
    Norton, Denis
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The effects of geopressuring and kerogen decomposition on mineral-fluid equilibria were calculated in order to predict the diagenetic-alteration mineralogy produced in equilibrium with kerogen-rich, geopressured sediments. These calculations indicate that several processes specific to kerogen-rich geopressured sediments contribute to the development of a characteristic alteration mineralogy. These processes are: (1) the upward flow of fluids in geopressured sediments, in contrast to the generally downward flow of fluids in normally-pressured sediments; (2) the coincidence of the depths of geopressuring (2-3 km; Fertl et al., 1976), with the geothermal temperatures necessary for CO₂ release (100°-135°C; Hunt, 1979), and CH₄ release (>90°C; Hunt, 1979); and (3) the opposing rates of sediment burial and CO₂ and CH₄ transfer into the upward-flowing fluids, which result in the geopressured pore fluids becoming enriched, and in some cases saturated, with respect to CO₂ and CH₄. Three patterns of mineral deposition during diagenesis of kerogen-rich geopressured sediments are predicted. Quartz deposition should occur at the top of the geopressured zone and decrease rapidly with increased depth as a result of the decreased flux of upward fluid flow with increased depth. Carbonate deposition should occur above the zone of CO₂ release from kerogen degradation as a result of the upward flux of CO₂ saturated fluids and subsequent decreases in fluid temperature, pressure and CO₂ solubility. Kaolinite-carbonate could deposit within and above the zone of CO₂ release from kerogen as a result of silicate dissolution by CO₂-rich acid pore fluids, followed by the potential for albite-carbonate deposition upon CO₂ depletion. In contrast, laumontite and anhydrite should not deposit during diagenesis of kerogen-rich geopressured sediments, but could deposit during diagenesis of normally-pressured or kerogen-poor geopressured sediments. An additional difference between these diagenetic environments is that quartz deposition would not be expected in normally-pressured sediments in which fluids are expected to be flowing downward. These mineralogic relationships compare favorably with observed relationships in the kerogen-rich geopressured sandstones of the Frio formation from the Texas Gulf Coast.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Geosciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.