• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    SMJ analysis of monodromy fields.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8814227_sip1_m.pdf
    Size:
    2.783Mb
    Format:
    PDF
    Description:
    azu_td_8814227_sip1_m.pdf
    Download
    Author
    Davey, Robert Michael.
    Issue Date
    1988
    Keywords
    Isomonodromic deformation method.
    Quantum field theory.
    Dirac equation.
    Advisor
    Palmer, John
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The connection discovered by M. Sato, T. Miwa and M. Jimbo (SMJ) between the monodromy-preserving deformation theory of the two-dimensional Euclidean Dirac operator and quantum fields is rigorously established for the case of nonreal S¹ monodromy parameters. This connection involves the expression of the associated n-point functions in terms of solutions to deformation equations which arise as necessary conditions for the monodromy exhibited by a class of multivalued solutions of the Euclidean Dirac equation to be preserved under perturbations of branch points. Our approach utilizes recent results involving infinite-dimensional group representations. A lattice version of the n-point function is introduced as a section of a determinant bundle defined over an infinite dimensional Grassmannian. A trivialization for this bundle is singled out so that the corresponding n-point functions behave like Ising correlations in the massive scaling regime. Then the SMJ n-point functions are recovered as the scaled functions. A parallel scaling analysis is carried out with lattice analogues of the Euclidean Dirac wave functions which scale to square-integrable multivalued solutions of the Euclidean Dirac equation and the connection between the SMJ deformation theory and the n-point functions is rigorously established in terms of local Fourier expansion coefficients of these wave functions. These results are presented in detail for two-point functions with the same monodromy associated to each site.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Mathematics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.