• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Analysis of force parameters used to assess the fatigability of mammalian motor units.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8814238_sip1_c.pdf
    Size:
    12.81Mb
    Format:
    PDF
    Download
    Author
    Gordon, Debra Anne.
    Issue Date
    1988
    Keywords
    Fatigue.
    Muscles.
    Muscle strength.
    Advisor
    Stuart, Douglas G.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The investigation of motor-unit fatigability in reduced-animal models has been dominated by a single fatigue test, one fatigue index, and an emphasis on changes in the magnitude of (usually peak) force. Although the standard fatigue test has been reported to elicit changes in the dynamic phases of an isometric tetanus, this has not been systematically studied in single motor units. Furthermore, changes in the profile of individual tetani during the fatigue test have led some investigators to suggest that other force parameters (i.e., integrated force) or fatigue indices may provide additional information about motor-unit performance during the test. The purposes of this project were to: (1) evaluate the time courses of a variety of force parameters characterizing both the magnitude of force and the dynamic aspects of force during a 4-min fatigue test of functionally isolated cat, tibialis posterior motor units; and (2) determine if motor units could be classified into the conventional motor-unit types based on these new parameters. There was considerable variability in the average time course of the magnitude of force during the fatigue test. The variability within the type FR and F(int) motor-unit groups resulted in several units whose characteristics bordered those which, by definition, separate unit types. The classification of these units depended on the force parameter and fatigue index used to quantify their fatigability. The time course of the magnitude of force also revealed differences in the behavior of potentiating and non-potentiating groups. There were many differences between motor-unit types in terms of dynamic-force parameters before, during and after the fatigue test. Comparison of initial and 2-min values revealed a preferential effect of stimulation on force development in type S and FR units (i.e., increased rate) and on force decay in type F(int) and FF units (i.e., prolonged duration and decreased rate). The time courses of these effects further revealed qualitative differences between different combinations of motor-unit types. Groups of units (or lack thereof) revealed by dynamic-force parameters were compared to conventional motor-unit types by discriminant analysis. The results were not always consistent with conventional types.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Physiology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.