Show simple item record

dc.contributor.advisorStuart, Douglas G.en_US
dc.contributor.authorGordon, Debra Anne.
dc.creatorGordon, Debra Anne.en_US
dc.date.accessioned2011-10-31T17:06:24Z
dc.date.available2011-10-31T17:06:24Z
dc.date.issued1988en_US
dc.identifier.urihttp://hdl.handle.net/10150/184368
dc.description.abstractThe investigation of motor-unit fatigability in reduced-animal models has been dominated by a single fatigue test, one fatigue index, and an emphasis on changes in the magnitude of (usually peak) force. Although the standard fatigue test has been reported to elicit changes in the dynamic phases of an isometric tetanus, this has not been systematically studied in single motor units. Furthermore, changes in the profile of individual tetani during the fatigue test have led some investigators to suggest that other force parameters (i.e., integrated force) or fatigue indices may provide additional information about motor-unit performance during the test. The purposes of this project were to: (1) evaluate the time courses of a variety of force parameters characterizing both the magnitude of force and the dynamic aspects of force during a 4-min fatigue test of functionally isolated cat, tibialis posterior motor units; and (2) determine if motor units could be classified into the conventional motor-unit types based on these new parameters. There was considerable variability in the average time course of the magnitude of force during the fatigue test. The variability within the type FR and F(int) motor-unit groups resulted in several units whose characteristics bordered those which, by definition, separate unit types. The classification of these units depended on the force parameter and fatigue index used to quantify their fatigability. The time course of the magnitude of force also revealed differences in the behavior of potentiating and non-potentiating groups. There were many differences between motor-unit types in terms of dynamic-force parameters before, during and after the fatigue test. Comparison of initial and 2-min values revealed a preferential effect of stimulation on force development in type S and FR units (i.e., increased rate) and on force decay in type F(int) and FF units (i.e., prolonged duration and decreased rate). The time courses of these effects further revealed qualitative differences between different combinations of motor-unit types. Groups of units (or lack thereof) revealed by dynamic-force parameters were compared to conventional motor-unit types by discriminant analysis. The results were not always consistent with conventional types.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectFatigue.en_US
dc.subjectMuscles.en_US
dc.subjectMuscle strength.en_US
dc.titleAnalysis of force parameters used to assess the fatigability of mammalian motor units.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.identifier.oclc701244161en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberEnoka, Roger M.en_US
dc.contributor.committeememberHartshore, Daviden_US
dc.contributor.committeememberKreulen, Daviden_US
dc.contributor.committeememberMorkin, Eugeneen_US
dc.identifier.proquest8814238en_US
thesis.degree.disciplinePhysiologyen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh.D.en_US
dc.description.noteThis item was digitized from a paper original and/or a microfilm copy. If you need higher-resolution images for any content in this item, please contact us at repository@u.library.arizona.edu.
dc.description.admin-noteOriginal file replaced with corrected file July 2023.
refterms.dateFOA2018-08-22T18:18:57Z
html.description.abstractThe investigation of motor-unit fatigability in reduced-animal models has been dominated by a single fatigue test, one fatigue index, and an emphasis on changes in the magnitude of (usually peak) force. Although the standard fatigue test has been reported to elicit changes in the dynamic phases of an isometric tetanus, this has not been systematically studied in single motor units. Furthermore, changes in the profile of individual tetani during the fatigue test have led some investigators to suggest that other force parameters (i.e., integrated force) or fatigue indices may provide additional information about motor-unit performance during the test. The purposes of this project were to: (1) evaluate the time courses of a variety of force parameters characterizing both the magnitude of force and the dynamic aspects of force during a 4-min fatigue test of functionally isolated cat, tibialis posterior motor units; and (2) determine if motor units could be classified into the conventional motor-unit types based on these new parameters. There was considerable variability in the average time course of the magnitude of force during the fatigue test. The variability within the type FR and F(int) motor-unit groups resulted in several units whose characteristics bordered those which, by definition, separate unit types. The classification of these units depended on the force parameter and fatigue index used to quantify their fatigability. The time course of the magnitude of force also revealed differences in the behavior of potentiating and non-potentiating groups. There were many differences between motor-unit types in terms of dynamic-force parameters before, during and after the fatigue test. Comparison of initial and 2-min values revealed a preferential effect of stimulation on force development in type S and FR units (i.e., increased rate) and on force decay in type F(int) and FF units (i.e., prolonged duration and decreased rate). The time courses of these effects further revealed qualitative differences between different combinations of motor-unit types. Groups of units (or lack thereof) revealed by dynamic-force parameters were compared to conventional motor-unit types by discriminant analysis. The results were not always consistent with conventional types.


Files in this item

Thumbnail
Name:
azu_td_8814238_sip1_c.pdf
Size:
12.81Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record