• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A physically based analytical model to predict infiltration under surge irrigation.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8814248_sip1_m.pdf
    Size:
    3.745Mb
    Format:
    PDF
    Description:
    azu_td_8814248_sip1_m.pdf
    Download
    Author
    Killen, Mark Albert.
    Issue Date
    1988
    Keywords
    Soils, Irrigated.
    Soil absorption and adsorption.
    Irrigation.
    Advisor
    Slack, Donald C.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A significant advantage attributed to surge flow irrigation is that for the same volume of water applied the stream will advance farther along the furrow than with continuous flow. This potentially will reduce runoff and deep percolation which will improve uniformity and application efficiency where this advance phenomenon holds. The mechanism for improvement in advance time has generally been ascribed to surface sealing and surface layer consolidation. However, these phenomena do not satisfactorily explain improved advance times in sandy soils. Widely used infiltration equations which require the determination of empirical coefficients are unsatisfactory as predictors of infiltration conditions of intermittent wetting. The Green-Ampt model and a simple redistribution model are combined into an analytical model to predict infiltration under surge irrigation. The model results are compared to infiltration tests on soil columns of three soils of different soil textures. Also the model and the experimental results from the soil columns are compared to predictions made by two numerical solutions of the Richard's equation. One of the numerical models includes the effect of hysteresis by the use of Mualem's model to predict the variation of moisture content with potential, the other numerical model neglects the effect of hysteresis. A comparison of the analytical and the numerical models shows good agreement in their predictions for the soils and surge cycles tested. A comparison of predictions made by all three models shows good correlation to the experimental results. Although the number of tests done on the analytical model were limited it appears to be nearly as good a predictor of infiltration as the numerical models. The greatest strength of the analytical model is that while the numerical models took many hours to do a single run, the analytical model took only a few minutes. Both model and experimental results indicate that there was no reduction in infiltration rates or volumes infiltrated with intermittent as compared to continuous wetting. Thus the reduction in hydraulic gradient is not a factor in the reduced infiltration observed by others.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Agricultural Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.