Name:
azu_td_8814256_sip1_m.pdf
Size:
3.972Mb
Format:
PDF
Description:
azu_td_8814256_sip1_m.pdf
Author
Lesser, Michael PatrickIssue Date
1988Advisor
Angel, J. Roger P.
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
In the past decade, charge-coupled devices (CCDs) have rapidly become the astronomical imaging detector of choice for the visible and near-IR spectral regions. There are, however, several problems which have greatly reduced the availability of sufficient quality CCDs to the astronomical community. These include the low blue and ultraviolet quantum efficiency of thick devices, the lack of properly thinned devices, warped imaging surfaces, interference fringing, and the small size of the detectors themselves compared to telescope focal planes. This dissertation presents methods which can be used to optimize CCDs obtained from various manufacturers for astronomical observations. A new thinning technique which produces an optically flat surface across an entire CCD is demonstrated. A mounting technique which maintains a flat and stable imaging surface for thinned devices by bonding the CCD backside against a transparent glass support substrate is also demonstrated. Bump bonding of CCDs onto a silicon support before thinning is discussed as a future mounting/thinning technique. The design of antireflection coatings for the near-UV through near-IR spectral regions is explained and demonstrated on silicon diodes, allowing quantum efficiencies as high as 90% to be obtained. The reduction of interference fringing amplitudes by as much as 70% in the red and near-IR with AR coatings is also discussed. And finally, the design of CCD focal plane mosaics using the optimization techniques presented is discussed.Type
textDissertation-Reproduction (electronic)
Degree Name
Ph.D.Degree Level
doctoralDegree Program
AstronomyGraduate College