• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A characterization of the circularity of certain balanced incomplete block designs.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8814261_sip1_m.pdf
    Size:
    2.872Mb
    Format:
    PDF
    Description:
    azu_td_8814261_sip1_m.pdf
    Download
    Author
    Modisett, Matthew Clayton.
    Issue Date
    1988
    Keywords
    Incomplete block designs.
    Combinatorial designs and configurations.
    Circle.
    Advisor
    Clay, James R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    When defining a structure to fulfill a set of axioms that are similar to those prescribed by Euclid, one must select a set of points and then define what is meant by a line and what is meant by a circle. When properly defined these labels will have properties which are similar to their counterparts in the (complex) plane, the lines and circles which Euclid undoubtedly had in mind. In this manner, the geometer may employ his intuition from the complex plane to prove theorems about other systems. Most "finite geometries" have clearly defined notions of points and lines but fail to define circles. The two notable exceptions are the circles in a finite affine plane and the circles in a Mobius plane. Using the geometry of Euclid as motivation, we strive to develop structures with both lines and circles. The only successful example other than the complex plane is the affine plane over a finite field, where all of Euclid's geometry holds except for any assertions involving order or continuity. To complement the prolific work concerning finite geometries and their lines, we provide a general definition of a circle, or more correctly, of a collection of circles and present some preliminary results concerning the construction of such structures. Our definition includes the circles of an affine plane over a finite field and the circles in a Mobius plane as special cases. We develop a necessary and sufficient condition for circularity, present computational techniques for determining circularity and give varying constructions. We devote a chapter to the use of circular designs in coding theory. It is proven that these structures are not useful in the theory of error-correcting codes, since more efficient codes are known, for example the Reed-Muller codes. However, the theory developed in the earlier chapters does have applications to Cryptology. We present five encryption methods utilizing circular structures.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Mathematics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.