Show simple item record

dc.contributor.advisorFahey, Walter J.en_US
dc.contributor.authorNowrozi, Mojtaba Faiz.
dc.creatorNowrozi, Mojtaba Faiz.en_US
dc.date.accessioned2011-10-31T17:07:10Zen
dc.date.available2011-10-31T17:07:10Zen
dc.date.issued1988en_US
dc.identifier.urihttp://hdl.handle.net/10150/184396en
dc.description.abstractRecently, refractory materials have been proposed as a strong alternative to poly-silicon and aluminum alloys as metallization systems for Very Large Scale Integrated (VLSI) circuits because of their improved performance at smaller Integrated Circuit (IC) feature size and higher interconnect current densities. However, processing and reliability problems associated with the use of refractory materials have limited their widespread acceptance. The hot-wall low pressure chemical vapor deposition (LPCVD) of Molybdenum and Tungsten from their respective hexacarbonyl sources has been studied as a potential remedy to such problems, in addition to providing the potential for higher throughput and better step coverage. Using deposition chemistries based on carbonyl sources, Mo and W deposits have been characterized with respect to their electrical, mechanical, structural, and chemical properties as well as their compatibility with conventional IC processing. Excellent film step coverage and uniformity were obtained by low temperature (300-350 C) deposition at pressures of 400-600 mTorr. As-deposited films were observed to be amorphous, with a resistivity of 250 and 350 microohm-cm for Mo and W respectively. On annealing at high temperatures in a reducing or inert atmosphere, the films crystallize with attendant reduction in resistivity to 9.3 and 12 microohm-cm for Mo and W, respectively. The average grain size also increases as a function of time and temperature to a maximum of 2500-3000 A. The metals and their silicides that are deposited, using silane as silicon source, are integratable to form desired metal-silicide gate contact structures. Thus, use of the low resistivity of the elemental metal coupled with the oxidation resistance of its silicide manifests the quality and economy of the process. MOS capacitors with Mo and W as the gate material have been fabricated on n-type (100) silicon. A work function of 4.7 +/- 0.1 eV was measured by means of MOS capacitance-voltage techniques. The experimental results further indicate that the characteristics of W-gate MOS devices related to the charges in SiO₂ are comparable to those of poly-silicon; while, the resistivity is about two orders of magnitude lower than poly-silicon. It is therefore concluded that hot-wall low pressure chemical vapor deposition of Mo and W from their respective carbonyl sources is a viable technique for the deposition of reliable, high performance refractory metal/silicide contact and interconnect structures on very large scale integrated circuits.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectRefractory materials.en_US
dc.subjectVapor-plating.en_US
dc.subjectSilicides.en_US
dc.subjectThin films.en_US
dc.subjectTungsten.en_US
dc.subjectMolybdenum.en_US
dc.titleA systematic study of LPCVD refractory metal/silicide interconnect materials for very large scale integrated circuits.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.identifier.oclc701246544en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.identifier.proquest8814264en_US
thesis.degree.disciplineElectrical and Computer Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh.D.en_US
refterms.dateFOA2018-08-22T18:24:09Z
html.description.abstractRecently, refractory materials have been proposed as a strong alternative to poly-silicon and aluminum alloys as metallization systems for Very Large Scale Integrated (VLSI) circuits because of their improved performance at smaller Integrated Circuit (IC) feature size and higher interconnect current densities. However, processing and reliability problems associated with the use of refractory materials have limited their widespread acceptance. The hot-wall low pressure chemical vapor deposition (LPCVD) of Molybdenum and Tungsten from their respective hexacarbonyl sources has been studied as a potential remedy to such problems, in addition to providing the potential for higher throughput and better step coverage. Using deposition chemistries based on carbonyl sources, Mo and W deposits have been characterized with respect to their electrical, mechanical, structural, and chemical properties as well as their compatibility with conventional IC processing. Excellent film step coverage and uniformity were obtained by low temperature (300-350 C) deposition at pressures of 400-600 mTorr. As-deposited films were observed to be amorphous, with a resistivity of 250 and 350 microohm-cm for Mo and W respectively. On annealing at high temperatures in a reducing or inert atmosphere, the films crystallize with attendant reduction in resistivity to 9.3 and 12 microohm-cm for Mo and W, respectively. The average grain size also increases as a function of time and temperature to a maximum of 2500-3000 A. The metals and their silicides that are deposited, using silane as silicon source, are integratable to form desired metal-silicide gate contact structures. Thus, use of the low resistivity of the elemental metal coupled with the oxidation resistance of its silicide manifests the quality and economy of the process. MOS capacitors with Mo and W as the gate material have been fabricated on n-type (100) silicon. A work function of 4.7 +/- 0.1 eV was measured by means of MOS capacitance-voltage techniques. The experimental results further indicate that the characteristics of W-gate MOS devices related to the charges in SiO₂ are comparable to those of poly-silicon; while, the resistivity is about two orders of magnitude lower than poly-silicon. It is therefore concluded that hot-wall low pressure chemical vapor deposition of Mo and W from their respective carbonyl sources is a viable technique for the deposition of reliable, high performance refractory metal/silicide contact and interconnect structures on very large scale integrated circuits.


Files in this item

Thumbnail
Name:
azu_td_8814264_sip1_w.pdf
Size:
5.381Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record