• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The mechanism and evolution of recombinational repair.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8816308_sip1_c.pdf
    Size:
    5.529Mb
    Format:
    PDF
    Download
    Author
    Chen, Davis Shao-Hsuan.
    Issue Date
    1988
    Keywords
    DNA repair.
    Genetic recombination.
    Advisor
    Bernstein, Harris
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Recently, hydrogen peroxide (H₂O₂), and its free-radical product the hydroxyl radical (OH·), have been identified as major sources of DNA damage in living organisms. We examined DNA repair of hydrogen peroxide damage, using a standard bacteriophage T4 test system in which several different types of repair could be determined. Post-replication recombinational repair and denV-dependent excision repair had little or no effect on H₂O₂ damage. Also, an enzyme important in repair of H₂O₂-induced DNA damage in the E. coli host cells, exonuclease III, was not utilized in repair of lethal H₂O₂ damage to the phage. However, multiplicity reactivation, a form of recombinational repair between multiply infecting phage genomes, was found to repair H₂O₂ damages efficiently. The RAD52 gene of Saccharomyces cerevisiae and genes 46 and 47 of bacteriophage T4 are essential for most recombination and recombinational repair in their respective organisms. The RAD52 gene was introduced into expression vectors which were used to transform E. coli. RAD52 expression was induced, and its ability to complement either gene 46 or gene 47 phage mutants was determined with respect to phage growth, recombination, and recombinational repair. RAD52 gene expression allowed growth of gene 46 and gene 47 mutants under otherwise restrictive conditions, as measured by plaque formation and burst size. The RAD52 gene also restored the ability of gene 46 and gene 47 mutants to undergo recombination of rII markers. Furthermore, the RAD52 gene restored recombinational repair after UV irradiation of gene 46 and gene 47 mutants. The published DNA sequence of RAD52 was compared with the published sequences of genes 46 and 47. Although overall homologies were only marginally significant, RAD52 and gene 46 had substantial sequence similarity over a limited region. These results indicate that the recombinational repair pathway found in phage T4 may be ubiquitous for DNA damage caused by endogenous exidative reactions. Furthermore, they indicated that an essential element of the recombination mechanism in both procaryotic viruses and eucaryotes arose from a common ancestor. Procaryotes and eucaryotes are thought to have diverged at least one billion years ago. Thus, recombination apparently arose early in evolution.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Genetics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.