• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The design and implementation of high level programming language features for pattern matching in real-time.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8822431_sip1_c.pdf
    Size:
    7.169Mb
    Format:
    PDF
    Download
    Author
    Nilsen, Kelvin Don.
    Issue Date
    1988
    Keywords
    Icon (Computer program language)
    Real-time data processing.
    Advisor
    Griswold, Ralph E.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    High-level programming language features simplify software development by eliminating many low-level programming concerns and by providing programmers with useful abstractions to simplify description and analysis of their programs. This dissertation discusses briefly some of the special needs of structural pattern-matching programs that must execute in real time and suggests language features to support these needs. These language features are implemented in an experimental version of the Icon programming language and examples of how these language features can be used are presented. This dissertation also presents and discusses the implementation of these language mechanisms, including the implementation of a new algorithm for garbage collecting linked data structures and strings in real time. One of the new language features is a stream data type, which allows programmers to perform pattern matching directly on sequences of data values produced by external sources, without requiring explicit read operations to bring the data into memory before analyzing it. Other new language features provide the ability to create and manipulate concurrent Icon processes, between which the stream data type serves as the principal mechanism for interprocess communication. Stream and concurrent process manipulation mechanisms integrate naturally with each other and with the existing mechanisms of the Icon programming language. Sequential Icon programs are, for the most part, unaffected by the new language capabilities.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Computer Science
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.