• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The electronic structure of methyl-substituted ferrocenes and early transition metal bent metallocenes by gas phase ultraviolet and X-ray photoelectron spectroscopies.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8824266_sip1_m.pdf
    Size:
    3.886Mb
    Format:
    PDF
    Description:
    azu_td_8824266_sip1_m.pdf
    Download
    Author
    Darsey, Gary Paul
    Issue Date
    1988
    Keywords
    Ferrocene -- Structure.
    Metallocenes -- Structure.
    Photoelectron spectroscopy.
    Advisor
    Lichtenberger, Dennis L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The details of the electronic structure and bonding in ferrocenes and early transition metal bent metallocenes are probed by photoelectron spectroscopy. The fundamental electronic interaction of the methyl group substituted for a hydrogen on a metal-coordinated cyclopentadienyl ring is shown by a combined core and valence pe spectroscopic study of a series of methyl-substituted ferrocenes. Shifts of core and valence ionization energies upon methyl substitution are equivalent and additive for the iron atom. Knowledge of the core ionization energy shifts for both carbon and iron allow the relative changes in atomic charges upon methyl substitution to be found. In these molecules, the methyl group is found not to be an inductive electron donor as is commonly assumed. The primary electronic effect of methyl substitution is on the valence orbitals of the cyclopentadienyl ring. Methylation of the cyclopentadienyl rings of ferrocene causes a dramatic redistribution of valence electron density and greatly increases the covalent nature of metal-ring bonding. An understanding of the electronic effect of methylation of metal-coordinated cyclopentadienyl rings is used to establish the relative locations of ring π and Cl ionizations in the pe spectra of group IV and V early transition metal bent metallocene dichlorides with both unsubstituted cyclopentadienyl and pentamethylcyclopentadienyl ligands. The differences in chloride and methyl ligand bonding to an early transition metal center are reflected in the photoelectron data of the dichlorides and related dimethyls. The relative differences in metal-chlorine and metal-carbon bond strengths are also shown in the pe data. The relationship between bond strengths and ionization energies is detailed for early transition metal bent metallocenes of niobium and tantalum with a variety of ligands. The relative bond strength/ionization energy information for metal-hydrogen and metal-carbon bonds is shown to help in understanding the stability of niobocene and tantalocene ethylene-hydride complexes and their resistance to intramolecular olefin insertion. Evidence from the pe data concerning the electron distribution as well as the relative bond strengths in these ethylene-hydride complexes is found supporting the consideration of these complexes more properly as metallacyclopropane-hydrides.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.