THE EVALUATION OF SUPERGENE COPPER DEPOSITS FOR IN SITU LEACHING.
Author
HACKMAN, DAVID BRENT.Issue Date
1982Keywords
Copper mines and mining -- Arizona.Copper mines and mining -- Mexico -- Sonora (State)
Copper ores -- Arizona.
Copper ores -- Mexico -- Sonora (State)
Leaching.
Advisor
Peters, William C.
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
Copper from dump, heap, and in situ leaching accounts for about 15% of United States copper production. In situ leaching is the least understood and most difficult to evaluate of these leaching methods. Several types of supergene copper deposits are derived from porphyry copper systems depending on the geologic and climatic factors involved in the formation of a deposit. The geologic and climatic factors involved in the formation of a deposit. The geologic evaluation of a deposit should provide most of the basic information required to access a deposit for in situ leaching. Metallurgical testing can determine the leachability and acid consumption of the ore as well as the need for an oxidizing agent through the use of agitation and column leaching tests. The location of the deposit with respect to the water table determines the type of ground preparation required. Hydraulic fracturing can be used for deposits below the water table and blasting or caving can be used for deposits above the water table. Fluid flow through the deposit depends on the method of application, the permeability of the deposit, and the method of egress from the deposit. The leaching of a copper "oxide" deposit depends on the strength and volume of sulfuric acid which reaches the ore. The leaching of a copper sulfide deposit depends on an oxidant as well as sulfuric acid reaching the ore.Type
textDissertation-Reproduction (electronic)
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Mining and Geological EngineeringGraduate College