• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Deposition and characterization of optically nonlinear thin films with novel microstructure.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8905788_sip1_c.pdf
    Size:
    6.544Mb
    Format:
    PDF
    Download
    Author
    Suits, Frank.
    Issue Date
    1988
    Keywords
    Thin films -- Optical properties.
    Nonlinear optics.
    Microstructure.
    Advisor
    Gibson, Ursula J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This work concerns the vacuum deposition of novel thin films that exhibit nonlinear optical effects due to their unusual microstructure. We discuss four different materials: 1) Tilted columns of aluminum-oxide 2) Gold particles in aluminum-oxide 3) Cadmium sulpho-selenide particles in aluminum-oxide 4) Silver particles in zinc-sulphide. We begin with a description of the vacuum system and some the techniques used to characterize the optical and structural properties of the films. This leads to our study of second-harmonic generation (SHG) in aluminum-oxide thin films deposited at an angle to the evaporant source. We show that SHG is very sensitive to the non-isotropic microstructure that results from such a deposition. and the behavior of the SHG signal with sample orientation provides insight to the symmetry properties of the microstructure. In a related study we show that AU/Al₂O₃ composite films produce a large SHG signal. We investigate the dependence of the strength of the SHG signal with fill-fraction of gold and show that it increases quadratically. in agreement with theory. The third material we discuss is cadmium sulpho-selenide doped aluminumoxide. We describe attempts at nucleating semiconductor crystallites in a variety of hosts through a process of co-deposition and subsequent annealing. We also deposit alternate layers of CdS-Se and Al₂O₃ with the semiconductor layer thin enough that interspersed crystallites form. This results in suspended. isolated crystallites similar to the doped-glass materials of interest to nonlinear optics. A waveguide of a CdS/Al₂O₃ "sandwich" demonstrates optical nonlinearity through a power-dependent prism coupling experiment, and the degree of nonlinearity is much greater than undoped glass, though less than doped glass. The final section of the dissertation is a theoretical description of nonlinear optical behavior in a novel composite material consisting of metal particles in a nonlinear dielectric host. We assume the enhanced field around the resonating particles drives the host locally nonlinear through either a Kerr-type or thermal nonlinearity. We calculate the change in optical properties of the medium due to this effect and show that for a system of silver in zinc-sulphide the nonlinearity can be significant.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.