• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Axially accelerated saboted rods subjected to lateral forces.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8905804_sip1_w.pdf
    Size:
    4.739Mb
    Format:
    PDF
    Download
    Author
    Rabern, Donald Allen.
    Issue Date
    1988
    Keywords
    Rockets (Aeronautics) -- Launching.
    Acceleration (Mechanics)
    Advisor
    Richard, Ralph M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The methodology and analysis used to characterize the performance of a sabot/rod as it is subjected to lateral and axial loading during launch is presented. The methodology described incorporates the experimental and numerical portions of the evaluation. Three separate sabot/rod designs are evaluated for their performance in the launch tube and are compared with one another. The experimental portion of the research involved full-scale testing of two separate sabot/rod designs in a 120-mm launch tube that was slightly bent. When launched through the bent tube, the sabot/rod system was forced to negotiate lateral displacements at axial velocities of approximately 5400 fps. This combination of axial velocity and lateral displacement produced significant lateral loading on the sabot/rod system. A 2.3-MeV x-ray unit was used to determine the lateral displacement that occurred as the sabot/rod was forced through the bent tube. After the sabot/rod exited the launch tube, the sabot separation and rod straightness were recorded by four 150-keV x-ray units. The in-bore radiography experiments used x-ray shielding techniques to reduce x-ray scatter, and layered indexed film and intensifier screens to record the sabot/rod image. The processed film was computer scanned with a microdensitometer and was remapped on the computer to enhance the x-ray image. Results indicated rod lateral displacement accuracy to 0.007 in. Test results were used to benchmark the numerical analyses used to characterize the in-bore performance of each sabot/rod system studied. The numerical portion of the research involved three-dimensional modeling of the sabot/rod systems in three launch-tube environments: a perfectly straight launch tube, an existing accuracy tube, and the slightly bent tube used in the experimental program. Because of the good agreement between the experimental and numerical models, stress, strain, and displacement time histories were obtained from the numerical work and used to evaluate each of the three sabot/rod systems in three launch environments. A dynamic analysis was performed for each of nine separate models. Sliding surfaces, nonlinear constitutive relations, and multiple materials were used for each analysis. Results from both the experimental and numerical analyses are presented.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Civil Engineering and Engineering Mechanics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.