• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Applications of the magneto-optical Kerr effect to studies of stratified magnetic media.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8905912_sip1_c.pdf
    Size:
    3.229Mb
    Format:
    PDF
    Download
    Author
    Deeter, Merritt Norton.
    Issue Date
    1988
    Keywords
    Kerr effect.
    Magnetooptics.
    Optical storage devices.
    Reflectance.
    Advisor
    Sarid, Dror
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Three applications of Smith's model of magneto-optical effects in stratified magnetic media are presented. Each application involves the incident-angle dependence of magneto-optical effects which Smith's model treats explicitly. In addition. the three applications address current issues in magnetic and magneto-optical recording. The first problem considered is that of nonmagnetic surface layers which form on magnetic recording heads. The second is a theoretical treatment of effects which arise in magneto-optical recording when high numerical-aperture optical systems are combined with media exhibiting interference-enhanced optical properties. The final application is a novel technique for determining the entire dielectric tensor of materials used for magneto-optical recording. The incident-angle dependence of the longitudinal Kerr effect is employed to study nonmagnetic surface layers which form on ferrite recording heads. Calculations based on the Smith model show a correlation between the inert-layer thickness and the incident-angle dependence of the longitudinal Kerr effect. Experimental results confirm the shift in the angular position of the signal peak. in agreement with the theory for finite inert-layer thickness. An unambiguous determination of the inert-layer thickness for ferrite materials is prevented because of a periodic dependence of the peak angle on the inert-layer thickness. Jones-matrix algebra is used with the Smith model to quantitatively determine the effects of obliquely-incident rays on the reflectance and magneto-optical readout signals for various magneto-optical media structures. The most antireflective structure is found to be very sensitive to incident-angle effects. Structures with moderate reflectance (>10%). however. are not significantly affected by incident-angle effects. Finally. a technique for the determination of the optical and magneto-optical constants from multiple incident-angle measurements of reflectance and Kerr rotation is presented. The experimental system employs a Helium-Neon laser and a rotating differential detection system. The technique is used to investigate the optical properties of a series of Cu/Co multilayers and a comparison with a model based on the bulk optical. constants of Cu and Co is made. Anomalous behavior is observed for multilayers with very thin periods.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.