• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Excitation processes within an inductively coupled plasma as a function of pressure and related studies.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8906392_sip1_m.pdf
    Size:
    9.178Mb
    Format:
    PDF
    Description:
    azu_td_8906392_sip1_m.pdf
    Download
    Author
    Smith, Thomas Riddell.
    Issue Date
    1988
    Keywords
    Plasma spectroscopy -- Research.
    Plasma (Ionized gases) -- Research.
    Advisor
    Denton, M. Bonner
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Spectroscopic investigations have been carried out on an argon inductively coupled plasma operating at non-atmospheric pressure. The relationship between torch pressure and a number of plasma operating characteristics was explored for torch pressures between 100 and 3000 torr. The plasma operating characteristics examined include observed analyte emission intensities, electron densities, ion to atom ratios, and the deviation of plasma conditions from local thermodynamic equilibrium. The effect of pressure on the observed analyte emission intensities was found to include factors in addition to the change in density of species within the torch. Emission lines originating from ions and atoms with high ionization potentials (greater than 7 eV) increased in intensity with increasing torch pressure, in excess of that predicted by the increase in density of species present. Conversely, emission lines originating from atoms of low ionization potential decreased in intensity with increasing torch pressure despite the increase in density. The results of the spatial determination of electron densities and ion to atom ratios indicate that excitation conditions within the central channel of the plasma are shifted towards conditions of local thermodynamic equilibrium as the pressure within the torch is increased. In addition, it is possible to obtain improved limits of detection by optimizing the torch pressure for the analyte element of interest.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.