Show simple item record

dc.contributor.advisorKatterman, Frank R.en_US
dc.contributor.authorAlyousuf, Saeed Habib Hassan.
dc.creatorAlyousuf, Saeed Habib Hassan.en_US
dc.date.accessioned2011-10-31T17:14:00Zen
dc.date.available2011-10-31T17:14:00Zen
dc.date.issued1989en_US
dc.identifier.urihttp://hdl.handle.net/10150/184631en
dc.description.abstractPlant cells resistant to specific amino acid analogs have been reported to accumulate the corresponding free amino acids. The purpose of this study was to determine the concentrations of fifteen free amino acids: alanine, valine, leucine, isoleucine, glutamate, proline, arginine, aspartate, threonine, methionine, lysine, serine, glycine, tryptophan and phenylalanine in Daucus carota cell lines, resistant either to the proline analog azetidine-2 carboxylic acid (A2C), or to the tryptophan analog 5-methyltryptophan (5-MT), or to both the analogs combined. This study also intended to determine if these analogs influence the biosynthesis of the above-mentioned fifteen amino acids in the cell line resistant to A2C and 5-MT. Carrot cell lines resistant to 5-MT, to A2C, or to both the analogs were selected by incubating carrot cells in liquid growth media containing either 0.3 mM 5-MT, or 0.5 mM A2C for 6 to 16 weeks. Free amino acid concentrations were then determined in the extracts of the cells. Resistance to 5-MT resulted in significant increases in the intracellular concentrations of tryptophan, phenylalanine, leucine, valine, isoleucine, and proline. Resistance to A2C resulted in significant increase in proline only. Resistance to both the analogs caused increases in proline, lysine, phenylalanine, and tryptophan concentrations. In the cell line resistant to both the analogs, the treatment with 5-MT caused increases in leucine, proline, aspartate, threonine, lysine, and tryptophan. The treatment with A2C caused increases in isoleucine, arginine, threonine, methionine, lysine, and glycine, whereas treatment with both the analogs caused increases in threonine, lysine, phenylalanine, and tryptophan. These results indicate the possibility of a common biosynthetic control of a number of amino acids in carrot cells, resembling that found in microorganisms. It is also evident from the results that the analogs play an active role in the biosynthesis of amino acids in the resistant cell lines.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectAmino acids -- Synthesis.en_US
dc.subjectCarrots.en_US
dc.subjectPlant proteins.en_US
dc.subjectPlant cell culture.en_US
dc.titleComparison of free amino acid profiles in carrot cell suspension cultures resistant to stress conditions.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.identifier.oclc702146080en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberBartels, Paul G.en_US
dc.contributor.committeememberMoon, John W.en_US
dc.identifier.proquest8915943en_US
thesis.degree.disciplinePlant Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh.D.en_US
refterms.dateFOA2018-06-30T01:44:52Z
html.description.abstractPlant cells resistant to specific amino acid analogs have been reported to accumulate the corresponding free amino acids. The purpose of this study was to determine the concentrations of fifteen free amino acids: alanine, valine, leucine, isoleucine, glutamate, proline, arginine, aspartate, threonine, methionine, lysine, serine, glycine, tryptophan and phenylalanine in Daucus carota cell lines, resistant either to the proline analog azetidine-2 carboxylic acid (A2C), or to the tryptophan analog 5-methyltryptophan (5-MT), or to both the analogs combined. This study also intended to determine if these analogs influence the biosynthesis of the above-mentioned fifteen amino acids in the cell line resistant to A2C and 5-MT. Carrot cell lines resistant to 5-MT, to A2C, or to both the analogs were selected by incubating carrot cells in liquid growth media containing either 0.3 mM 5-MT, or 0.5 mM A2C for 6 to 16 weeks. Free amino acid concentrations were then determined in the extracts of the cells. Resistance to 5-MT resulted in significant increases in the intracellular concentrations of tryptophan, phenylalanine, leucine, valine, isoleucine, and proline. Resistance to A2C resulted in significant increase in proline only. Resistance to both the analogs caused increases in proline, lysine, phenylalanine, and tryptophan concentrations. In the cell line resistant to both the analogs, the treatment with 5-MT caused increases in leucine, proline, aspartate, threonine, lysine, and tryptophan. The treatment with A2C caused increases in isoleucine, arginine, threonine, methionine, lysine, and glycine, whereas treatment with both the analogs caused increases in threonine, lysine, phenylalanine, and tryptophan. These results indicate the possibility of a common biosynthetic control of a number of amino acids in carrot cells, resembling that found in microorganisms. It is also evident from the results that the analogs play an active role in the biosynthesis of amino acids in the resistant cell lines.


Files in this item

Thumbnail
Name:
azu_td_8915943_sip1_w.pdf
Size:
3.682Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record