• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    ENTROPY AND INFORMATION IN THE DESIGN AND ANALYSIS OF IMAGING SYSTEMS.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8227366_sip1_w.pdf
    Size:
    4.947Mb
    Format:
    PDF
    Download
    Author
    SABET-PEYMAN, FARHANG.
    Issue Date
    1982
    Keywords
    Imaging systems -- Design.
    Entropy (Information theory)
    Information theory.
    Optical data processing -- Mathematical models.
    Advisor
    Frieden, Roy
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The main thrust of this dissertation is the application of statistics and information theory to design, analysis and estimation pertaining to image-forming systems. This study explores the application of Shannon's information in pupil design, the characterization of noise, and study of its behavior in a specific electro-optical system, and estimation of the degraded spread function in atmospherical imagery using the maximum entropy method. Our study shows that a pupil designed to maximize Shannon's information throughput is an apodizer, resulting in resolution and contrast enhancement when compared to the diffraction-limited case. The Strehl ratio is about 0.55. Investigation of statistical and spectral properties as a function of gray level in an electro-optical tracking system indicates that the noise is "white," having a wide band and a close-to-Gaussian distribution. Estimating the spread function via maximum entropy technique has revealed some remarkable results. Using an edge as the object, simulation studies predict a superior estimate in the mean squared error sense to those of the least squares in the presence of three types of noise (signal-dependent Gaussian and Poisson, and signal-independent Gaussian noise). Information theory, linear systems theory, sampling theory and more particularly, statistics and the Fast Fourier Transform are used to derive our results.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.