• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Large impact events and atmospheric evolution on the terrestrial planets.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8915959_sip1_c.pdf
    Size:
    6.422Mb
    Format:
    PDF
    Download
    Author
    Grinspoon, David Harry.
    Issue Date
    1989
    Keywords
    Planets -- Atmospheres.
    Meteorites.
    Advisor
    Lewis, John S.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation is an exploration of the effects of the collision of large asteroids and comets on the atmosphere of the Earth and Earthlike planets. The first task undertaken is the characterization of the impact rates in the inner solar system during the present time, and during the first billion years of Solar System history when the flux was changing rapidly. Once defined, these fluxes are used to model the long term cumulative effect of multiple impacts on planetary atmospheres. The implications of cometary impacts on evolution of the water and deuterium abundances on Venus are examined. The short lifetime of water on Venus suggests that the water abundance is in a quasi-steady-state balance between loss by escape and replenishment by infall. In addition, the observed deuterium-to-hydrogen ratio on Venus is consistent with a steady state and does not necessarily imply a past water excess. Results are presented of a model incorporating a stochastic cometary source and nonthermal escape of hydrogen that produces the observed water abundance and D/H ratio. The stochastic variability of each of these quantities is shown to be large. Water on Venus is likely to be in a near steady state mediated by large comet impacts. The early history of water on the planet has been obscured by a history of random impacts. A study of the effects of impact-generated dust clouds on the primitive Earth leads to the conclusion that such clouds were significant perturbers of the early climate. The Earth was shrouded by an optically-thick dust cloud for ≈ 150-250 m.y. During this time the surface temperature was equal to the planetary equilibrium temperature unless significant heating by impacts or surface heat flow existed beneath the dust cloud. An admixture of a few per cent of organic materials in the cloud may have significantly lowered the planetary bond albedo, thereby raising the equilibrium temperature. The epoch of continuous dust shrouding was followed by a period of stochastically intermittent dust clouds occuring at greater intervals as the early intense bombardment subsided towards the present day flux.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Planetary Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.