• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Modeling and identification of nonlinear oscillations.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8915961_sip1_c.pdf
    Size:
    3.598Mb
    Format:
    PDF
    Download
    Author
    Head, Kenneth Larry.
    Issue Date
    1989
    Keywords
    Nonlinear oscillations -- Mathematical models.
    Anesthesia -- Mathematical models.
    Advisor
    Schultz, Donald G.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The topic of this dissertation, modeling and identification of nonlinear oscillation, represents an area of mathematical systems theory that has received little attention in the past. Primarily, the types of oscillation of interest are those found in biological systems where theoretical foundations for mathematical models are insufficient. These oscillations are also observed in other systems including electrical, mechanical, and chemical. The contributions of this dissertation are a generalized class of autonomous differential equations that are found to exhibit stable limit cycles, and an investigation of a method of system identification that can be used to estimate the model parameters. Here the observed signal is modeled as the response of a nonlinear system that can be described by differential equations. Modeling the signal in this way shifts the emphasis from signal characteristics, such as spectral content, to system characteristics, such as parameter values and system structure. This shift in emphasis may provide a better method for monitoring complex systems that exhibit periodic behavior such as patients under anesthesia. A class of autonomous differential equations, called the generalized oscillator models, are presented as one nᵗʰ-order differential equations with nonlinear coefficients. The coefficients are chosen to change sign depending on the magnitude of the phase variables. The coefficients are negative near the origin and positive away from the origin. Motivated by the generalized Routh-Hurwitz criterion, this coefficient sign changing produces the desired oscillation. Properties of the generalized oscillator model are investigated using the describing function method of analysis and numerical simulation. Several descriptive examples are presented. Based on the generalized oscillator model as a set of candidate models, the system identification problem is formed as a mathematical programming problem. The method of quasilinearization is investigated as method of solving the identification problem. Two examples are presented that demonstrate the method. It is shown that in general, the method of quasilinearization as a solution to the system identification problem will not converge regardless of the initial starting point. This result indicates that although the quasilinearization method is useful for solving two-point boundary value problems, it is not useful (in its present form) for solving the system identification problem.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Systems and Industrial Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.