• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    Statistics

    Display statistics

    Reactions of urea phosphate in calcareous and alkaline soils: Ammonia volatilization and effects on soil sodium and salinity.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8919018_sip1_m.pdf
    Size:
    1.918Mb
    Format:
    PDF
    Description:
    azu_td_8919018_sip1_m.pdf
    Download
    Author
    Ali, Abdul-Mehdi Saleh.
    Issue Date
    1989
    Keywords
    Urea as fertilizer.
    Ammonia as fertilizer.
    Soils -- Calcium content.
    Soils, Salts in.
    Advisor
    Stroehlein, Jack L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Nitrogen (N) loss in the form of volatilized ammonia (NH₃) is a considerable problem when ammonium (NH₄⁺) forming fertilizers are applied to calcareous or alkaline soils. Large areas of agricultural land, contain alkalinity and salinity problems, are potentially suitable for crop production with little alteration. This study was conducted to determine and compare the effectiveness of urea phosphate (UP) in reducing soil alkalinity and NH₃ loss. The volatilization of NH₃ from UP and urea (U) was studied on 3 selected soils (Hayhook SL, Laveen L and Latene L) using an aeration system. Urea phosphate and U were each applied at rates of 0, 50, 100 and 200 ppm-N either to the surface dry or in solution or mixed with the soil. The volatilized NH₃ was trapped in sulfuric acid, sampled periodically and analyzed for N using the semi microkjeldahl distillation apparatus. The effect of UP, Sulfur-Foam (SF), Phosphuric Solution (PHP) and a mixture of SF and UP (Mix) on leaching soil sodium (Na) and salinity was also studies on two soils (Pima L and Crot CL) in columns. Each of these amendments was applied at a rate of one and two equivalent amounts of the exchangeable Naₑₓ. The highest N loss in the form of NH₃ occurred when U was applied to Hayhook soil. However, UP applied to Hayhook soil (neutral to acidic, coarse textured and low CaCO₃ content) resulted in the lowest NH₃-N loss. Less NH₃-N loss was found from U application to Laveen and Latene soils (fine textured with higher CaCO₃ content) than with Hayhook soil. The general trend was higher N loss, in the form of volatilized NH₃, with surface application dry or in solution than when mixed with the soil. This trend showed an increase in the amount of volatilized NH₃ with increasing rate of N application. Urea phosphate was as effective as PHP or Mix (acid containing fertilizers) treatments in reducing soil salinity and alkalinity in Pima and Crot soils. No difference was found between rates of application (1 and 2 equivalent amount of Naₑₓ) except for soil pH. A similar trend in the decrease in soil salinity was found to that of the pH which was in the order PHP, UP, Mix, SF and control treatments. No significant difference was found between SF and control treatments in all parameters. No significant difference was found between treatments for exchangeable Ca. This was affected by the Ca compounds present in the soil. Generally, UP is a potential fertilizer for supplying N and phosphorus (P) as plant nutrients, reducing NH₃ volatilization, and can be used as a soil amendment to control soil salinity and alkalinity.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.