• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Pineal-mediated inhibition of prolactin cell activity: Investigation of dopaminergic involvement.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8919020_sip1_c.pdf
    Size:
    10.03Mb
    Format:
    PDF
    Download
    Author
    Burns, Danny Michael.
    Issue Date
    1989
    Keywords
    Dopamine -- Receptors -- Research.
    Prolactinoma -- Research.
    Pituitary gland -- Tumors -- Research.
    Melatonin -- Research.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The purpose of these studies was to determine whether the inhibitory effects of short photoperiod exposure on prolactin cell activity in male Syrian hamsters and/or the inhibitory effects of melatonin treatment on the growth and activity of diethylstilbestrol- (DES) induced prolactinomas in Fisher 344 (F344) rats were possibly mediated through alterations in dopaminergic regulatory mechanisms. In both the hamster and the rat, changes in hypothalamic dopamine neuronal activity and changes in pituitary responsiveness to dopamine have been suggested as possible mechanisms in the prolactin-inhibitory effects of light deprivation or melatonin administration. The present studies in the male Syrian hamster addressed two issues. First, it was of interest to determine if anterior pituitaries of long photoperiod-exposed male hamsters possess dopamine receptors, which are presumably necessary for responsiveness to dopamine. This was accomplished by analysis of ³H-spiperone binding to anterior pituitary membranes. Second, possible changes in pituitary sensitivity to dopamine were assessed by comparison of dose response curves for the inhibition by dopamine of prolactin release from hemipituitaries incubated in vitro from both long and short photoperiod-exposed animals over a series of time points from three to fifteen weeks. In the second series of experiments, adult female F344 rats received daily injection of melatonin or saline vehicle. After two weeks, half of the animals were sacrificed for analysis of ³H-spiperone binding to anterior pituitary membranes, measurement of hypothalamic dopamine turnover and analysis of in vitro pituitary sensitivity to dopamine. The remaining animals received subcutaneous implants containing DES and injections were continued on the same schedule until sacrifice four weeks later for measurement of the same parameters. In both the hamster and rat models, treatments exerted profound inhibitory effects on indices of prolactin cell activity. However, these studies provide no evidence for the involvement of altered dopaminergic regulation in the production of such effects. Neither pituitary sensitivity to dopamine in vitro nor hypothalamic dopamine neuronal activity was enhanced by short photoperiod exposure or melatonin treatment. Prolactin-inhibitory effects of these treatments appear to be mediated through as yet unidentified dopamine-independent mechanisms.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Anatomy
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.