• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Effects of injected atomic coherence on multiwave mixing.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8919023_sip1_w.pdf
    Size:
    6.706Mb
    Format:
    PDF
    Download
    Author
    Carty, Timothy.
    Issue Date
    1989
    Keywords
    Electromagnetic fields.
    Atoms -- Electric properties.
    Advisor
    Sargent, M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Discussion begins with a brief account of atomic level-pumping and reasons why atomic coherence is typically not considered in cw work on optical interactions. This dissertation is divided into four parts: semiclassical treatments of one-photon electric- dipole atom-field single-mode interactions and multimode interactions, and corresponding treatments for the two-photon interaction. We present the effects of injected atomic coherence on the polarization of the medium, the slowly varying envelope wave equation, the single- and multiwave mixing coefficients, and weak field propagation in a homogeneously broadened two-level medium. Spatial and temporal phase matching of the injected coherence to a field mode is crucial throughout, since the field may not be able to remain in phase with the induced and injected polarizations. One-photon injected coherence contributes directly to the polarization at the atomic resonance frequency. The perfectly phase-matched case leads to a linear superposition of an exponentially decaying field (Beer's law) and a constant field driven by the injected coherence. The interaction of an injected coherence with a detuned field produces frequency-symmetric sidebands about the pump field polarization. The sideband spacing equals the atom-field detuning. To probe the injected coherence we inject a weak resonant field. The resulting three-wave mixing leads to multiwave mixing coefficients that are unaffected to first-order in the weak sidemodes, but the injected coherence adds inhomogeneous terms to the coupled-mode equations. For both single- and multimode interactions the injected coherence does not affect the exponential growth/decay of the sidemodes, but it supports a weak field that may propagate if properly phase matched. For two-photon media the injected coherence requires at least one field interaction in order to produce a polarization, which then appears in the single- and multiwave mixing coefficients. The exponential growth/decay rate is modified by the injected coherence. For a centrally-tuned pump the injected coherence contributes the standard multiwave mixing terms as well as additional effects. Four-wave mixing is discussed as a means of relaxing the spatial phase matching constraint on the injected coherence.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.