• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Electronic structure and bond energy trends in silicon-hydrogen and germanium-hydrogen bond activation by transition metals.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8919053_sip1_m.pdf
    Size:
    4.939Mb
    Format:
    PDF
    Description:
    azu_td_8919053_sip1_m.pdf
    Download
    Author
    Rai Chaudhuri, Anjana.
    Issue Date
    1989
    Keywords
    Chemical bonds.
    Electronic structure.
    Transition metals.
    Organometallic compounds.
    Advisor
    Lichtenberger, Dennis
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The electronic structure factors that control Si-H and Ge-H bond activation by transition metals are investigated by means of photoelectron spectroscopy. Molecular orbital calculations are also used to gain additional insight into the orbital interactions involved in bond activation. The complexes studied have the general molecular formula (η⁵-C₅R'₅)Mn(CO)(L)HER₃, where R' is H or CH₃, L is CO or PMe₃, E is Si or Ge and R is Ph or Cl. These compounds are interesting models for catalysts in industrial processes like hydrosilation. The compounds display different stages of interaction and "activation" of the E-H bonds with the metal. One purpose is to measure the degree of Mn, Si, H 3-center-2-electron bonding in these complexes. The three-center interaction can be tuned by changing the substituents on Si, methylating the cyclopentadienyl ring, changing the ligand environment around the metal and substituting Si with Ge. The degree of activation is measured by observing the shifts in the metal and ligand ionizations relative to starting materials and free ligand in the photoelectron spectrum. Changing the substituent on Si extensively changes the degree of activation. Photoelectron spectral studies on (η⁵-C₅H₅)Mn(CO)₂HSiPh₃ show this to be a Mn(I) system. Progressive methylation of the cyclopentadienyl ring increases the electron richness at the metal center with no substantial effect on the degree of activation. Substitution on the metal (PMe₃ for CO) is less able to control the electronic structure factors of activation than the substitution on the Si atom. The magnitude of Ge-H bond activation is found to be of the same order as the Si-H bond activation for analogous compounds as found by studying (η⁵-C₅H₅)Mn(CO)₂HGePh₃, (η⁵-CH₃C₅H₄)Mn(CO)₂HGePh₃ and (η⁵- C₅(CH₃)₅)Mn(CO)₂HGePh₃ complexes by photoelectron spectroscopy. The photoelectron spectra of CpFe(CO)₂SiCl₃ and CpFe(CO)₂SiMe₃ were measured to study the electron charge shift from the metal to the ligand in these complexes as compared to CpMn(CO)₂HSiR₃ complexes. The photoelectron spectroscopic studies include numerous perturbations of the ligand and metal center to observe the extent of bond interaction and remain one of the best techniques to detect activation products.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.