• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Characterization of a charge injection device detector for atomic emission spectroscopy.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8919058_sip1_c.pdf
    Size:
    10.10Mb
    Format:
    PDF
    Download
    Author
    Sims, Gary Robert.
    Issue Date
    1989
    Keywords
    Atomic emission spectroscopy.
    Spectrum analysis -- Instruments.
    Scientific apparatus and instruments -- Design and construction.
    Advisor
    Denton, Bonner
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A Charge Injection Device (CID) detector has been evaluated as a detector for simultaneous multielement atomic emission spectroscopy. The CID was incorporated into a special liquid nitrogen cooled, computer controlled camera system. Electro-optical characterization of the CID and camera system included determination of readout noise, quantum efficiency, spatial crosstalk, temporal hysteresis, spatial response uniformity, and linear dynamic range. The CID was used as a spectroscopic detector for an echelle grating spectrometer equipped with a direct current plasma emission source. The spectrometer was a standard commercial instrument modified to provide a reduced image format more suitable for use with the CID detector. The optical characteristics of this spectrometer, including wavelength coverage, and optical aberrations are described. The spectroscopic system was evaluated with respect to detection limits, linear dynamic range, and accuracy in both single element and simultaneous multielement modes. Detection limits compared well to literature values reported for photomultiplier tube detector based systems under similar conditions. CID detection limits were superior in the near infrared and visible wavelength region, comparable in the middle UV, and higher in the far UV. The detection limits were determined to be limited by background radiation shot noise. Several elements of a certified standard reference material were simultaneously determined in order to assess the accuracy of the spectroscopic system. The results were highly accurate, even when operating near or below the 3σ limits of detection. Spectral interferences for elements were avoided by using several analytical lines for each element. The results of these investigations indicate that the CID is a superior multichannel detector for analytical atomic emission spectrometry. The capability to simultaneously monitor a wide, continuous spectral range with high spatial resolution, high dynamic range, low readout noise, and insignificant signal crosstalk is now possible. Many analytical benefits of this approach, such as the potential capability to perform rapid qualitative and semiquantitative analysis and the ability to select the optimum spectral lines for highly accurate quantitative analysis are now readily achievable.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.