• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    An intelligence driven test system for detection of stuck-open faults in CMOS sequential circuits

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9000143_sip1_c.pdf
    Size:
    7.181Mb
    Format:
    PDF
    Download
    Author
    Sagahyroon, Assim Abdelrahman
    Issue Date
    1989
    Keywords
    Integrated circuits -- Large scale integration.
    Integrated circuits -- Testing.
    Advisor
    Hill, Frederick J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This paper discusses an intelligence driven test system for generation of test sequences for stuck-open faults in CMOS VLSI sequential circuits. The networks in system evaluation are compiled from an RTL representation of the digital system. To excite a stuck-open fault it is only necessary that the output of the gate containing the fault take on opposite values during two successive clock periods. Excitation of the fault must therefore constrain two successive input/present-state vectors, referred to in the paper as the pregoal and goal nodes respectively. An initialization procedure is used to determine the pregoal state. Two theorems are proved establishing a 1-1 correspondence between stuck-at and stuck-open faults. As a result the D-algorithm may be used to determine the goal node. Determining the nodes was tried on many circuits and a high success rate was achieved. The pregoal is observed to have more "don't care" values. The next step is a "sensitization search" for an input sequence (X(s)) that drives the memory elements to the determined pregoal and goal states over two consecutive clock periods. It is easier for the search to reach the pregoal due to the greater number of "don't cares." Following a "propagation search" for an input sequence (X(p)) to drive the effect of the fault to an external output, the sequence of vectors (X(s)), (X(p)) will be passed to an "ALL-Fault Simulator" for verification. The simulation will be clock mode but will represent the output retention resulting from the stuck-open faults. One measure of the value of a special search procedure for stuck-open faults can be obtained by comparing the results employing this search with results obtained by searching only for the analogous stuck-at faults. A first order prediction would be a likelihood less than 0.5 that the predecessor of a stuck-at goal node would excite an opposite output in the gate containing the fault. A comparison of the two methods using the stuck-open "All-Fault Simulator" is presented.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Electrical and Computer Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.